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Spatial and molecular characteristics determine tissue func-
tion, yet high-resolution methods to capture both concur-
rently are lacking. Here, we developed high-definition spatial 
transcriptomics, which captures RNA from histological tis-
sue sections on a dense, spatially barcoded bead array. Each 
experiment recovers several hundred thousand transcript-
coupled spatial barcodes at 2-μm resolution, as demonstrated 
in mouse brain and primary breast cancer. This opens the way 
to high-resolution spatial analysis of cells and tissues.

Charting cells’ spatial organization and molecular features is 
essential to understand how they interact in both normal and 
diseased tissues1,2. Massively parallel single-cell RNA sequenc-
ing (scRNA-Seq)3,4 can profile hundreds of thousands of dissoci-
ated individual cells, but does not retain their spatial position, and 
can introduce biases in cell recovery5. Conversely, spatial profiling 
captures detailed positional information in intact tissue, but cur-
rent methods require pre-selected markers, rely on nonstandard 
instrumentation6–11 or have limited spatial resolution, scalability or 
applicability. In particular, spatial transcriptomics12 (ST) is a spa-
tially barcoded RNA-Seq method providing transcriptome-wide 
coverage in many systems, but at a resolution of 100 μm (3–30 cells).

To bridge this gap, we developed high-definition spatial tran-
scriptomics (HDST, Fig. 1a) and demonstrate its application to 
large tissue areas in the mouse brain and human tumors in situ. In 
HDST, we deposit barcoded poly(d)T oligonucleotides into 2-μm 
wells with a randomly ordered bead array-based fabrication pro-
cess13 and decode their positions by a sequential hybridization and 
error-correcting strategy13,14. After a frozen tissue section is placed 
on the decoded slide, stained and imaged, RNA is captured and then 
profiled by RNA-Seq.

To produce a high-resolution, high-density bead array, we gen-
erated 2,893,865 individual barcoded beads with a split-and-pool 
approach (Supplementary Fig. 1a), randomly placed them into a 
hexagonal array of >1.4 million 2 μm wells and then decoded each 
bead’s location (Fig. 1a)13,14 with several hybridization rounds. Each 
round hybridizes a set of complementary and labeled decoder oli-
gonucleotides (decoders) (Methods), records fluorescence across 
the entire slide area and then strips the decoders. The process is 

repeated log3N times (14 times for the array presented here), where 
N is the number of sequences to be decoded with three labels 
used (Supplementary Fig. 1b). In this way, each bead and barcode 
receives a unique spatial color address14 creating a HDST array in 
~3 h total processing time.

To test HDST, we first profiled the main olfactory bulb (MOB) 
of the mouse brain, whose neurons have traditionally been defined 
by the presence of neuronal cell bodies across morphological lay-
ers15. We assessed whether HDST molecular data can be related to 
layers and other histological features. We analyzed three replicate 
sections by HDST and tested its performance in two key tasks: (1) 
generating high-resolution spatial expression patterns of individual 
genes, and (2) detecting cell types and assigning them to correct, 
high-resolution positions.

We confirmed that RNA capture was specific and in over-
all agreement with bulk RNA-Seq controls, despite the relatively 
low number of transcripts captured per spatial barcode. We first  
accounted for barcode redundancy (‘clashing’), decoding effi-
ciency and stringent barcode demultiplexing (Supplementary  
Fig. 2a and Supplementary Table 1). Next, we observed that at satu-
rating sequencing depth (Supplementary Fig. 2b), 85.6 ± 3.3% of  
all genes detected were located within the area physically covered 
by the tissue specimen (without using any lower cutoffs), with 
almost 160,000 barcodes generating spatially mapped transcripts 
per assay (n = 3 sections, Supplementary Fig. 2c). Although there 
were few unique molecular identifiers (UMIs) per barcode loca-
tion (7.1 ± 6.0 (mean ± s.d.), n = 3 sections), a very distinct spa-
tial in  situ profile followed the tissue boundary (Supplementary 
Fig. 2d,e), suggesting detection specificity. Moreover, a combined  
‘bulk’ expression profile of each HDST dataset correlated sig-
nificantly with published MOB bulk RNA-Seq (Supplementary  
Fig. 3a; Spearman’s ρ = 0.69 ± 0.02; mean ± s.d.) and across the three  
replicate experiments (Spearman’s ρ = 0.82 ± 0.06; mean ± s.d.). 
Most detected genes agreed between the bulk and HDST datasets 
(Supplementary Fig. 3b). Finally, comparing the HDST capture per 
bead to that observed from smFISH for three genes (Penk, Slc17a7 
and Fabp7), we estimated HDST capture efficiency at 1.3% per 
bead (Methods and Supplementary Table 2).
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Next, supervised analysis of HDST data correctly identified 
layer-specific expression signatures. We first annotated morpho-
logical layers (Methods) from the hematoxylin and eosin (H&E) 
stain of each specimen (Fig. 1b). We reasoned that 24 neighbor-
ing wells (r = ~6.5 μm) will likely capture transcripts from the same 
cell. We thus enhanced the signal by light binning, which pooled 
reads within a short range (for example, 5× compared to the 5 × 5 
hexagonal wells). On average, each 5× ‘enhanced’ bin had obser-
vations from 5.6 ± 2.7 (mean ± s.d., n = 3 sections) (x,y) decoded 
beads and 44.4 ± 30.6 (mean ± s.d., n = 3 sections) UMIs. Finally, 
we assigned each ‘enhanced’ bin to a layer, to robustly identify dif-
ferentially expressed (DE) genes between morphological layers 
(Methods). Following a smoothing Gaussian filter on the binned 
data (63.5 ± 38.6 (mean ± s.d.) UMIs per bin, n = 3 sections), we 
performed a two-sided t-test (FDR < 0.1), identifying DE signatures 
specific to morphological layers (Fig. 1c, Supplementary Table 3 
and Supplementary Fig. 4). Layer-enriched upregulated DE genes 
(FDR < 0.05; log2(fold change) > 1.5) were correctly assigned, as 
assessed by comparing their average and individual signatures to 
their in situ hybridization (ISH) score from the Allen Brain Atlas 
(ABA)16 (Supplementary Fig. 5).

To test spatial assignment of cell types, we developed a multi-
nomial naïve Bayes classifier to map the sparse high-resolution 
HDST data to cell type annotations by integration with scRNA-Seq 
(Methods). We first used scRNA-Seq UMI counts17 to compute the 
maximum likelihood estimates of the multinomial parameters for 
each cell type (Supplementary Table 4). We then estimated the like-
lihood that an expression profile of a given HDST barcode origi-
nated from a scRNA-Seq cell type and, using posterior probabilities, 
assigned cell types to barcode locations (Supplementary Table 5).

Approximately 49.4 ± 15.9% (mean ± s.d., n = 3 sections) of 
spatially barcoded HDST (1×) profiles were confidently assigned 
to a single cell type. We then leveraged the matched H&E images 
in HDST to segment single-cell nuclei based on the nuclear stain 
(Methods), related beads within nuclei and then used this aggre-
gated expression information to also perform cell typing. To esti-
mate our cell assignment’s sensitivity to read depth and spatial 
resolution, we decreased the resolution using segmenting and bin-
ning (Fig. 1d,e) and compared the assigned data to a ST dataset12 
(Supplementary Fig. 6a). The posterior probabilities of cell type  
assignments increased in the aggregated data (Supplementary Fig. 6b,c  
and Supplementary Table 6), with a cell type confidently predicted  
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Fig. 1 | HDST. a, HDST workflow. b, Labeling of morphological layers. HDST H&E image of a MOB and matching HDST (x,y) barcodes annotated into 
nine morphological areas. c, Layer-specific DE patterns in HDST. Shown is the summed normalized expression of positively enriched signature genes 
significantly (FDR < 0.1, two-sided t-test) associated with each layer as annotated in b. d,e, Nuclei segmentation and binning of HDST as in b.  
d, Segmented nuclei (sn-like) and lightly binned (sc-like) spatial barcodes assigned (black) to each of two cell types as in b. e, Enrichment of sn- and sc-
like spatial barcodes with assigned cell types (columns) to morphological layers (rows) as in b. Color bar represents −log10 (P value) (one-sided Fisher’s 
exact test, Bonferroni adjusted, P < 0.01) and gray tiles are nonsignificant values. OBNBL1, olfactory neuroblasts; OBINH1-3, inhibitory neurons; EPMB and 
EPEN, astroependymal cells; OEC, olfactory ensheathing cells; VLMC2, vascular cells; SATG2, satellite glia; OBNBL5, GABAergic neuroblasts; OBDOP1, 
dopaminergic periglomerular neuroblasts; OBNLB2, VGLUT1/2 neuroblasts; SEZ, subependymal zone; ONL, olfactory nerve layer; M/T, mitral layer; IPL, 
internal plexiform layer; GCL-E, GCL-I and GCL-D, granular layers; GL, glomerular layer; EPL, external plexiform layer.
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in 58.1 ± 5.3% (mean ± s.d., n = 3 sections) of segmented and 
61.3 ± 3.7% (mean ± s.d., n = 3 sections) of all (x,y) positions 
(Supplementary Fig. 6d), compared to 0.4% of (x,y) positions in ST 
data. DE markers drove the assignment task (Supplementary Fig. 6e 
and Supplementary Table 7).

Collecting H&E stains jointly with HDST data allowed us to 
further relate high-resolution barcodes to sub-cellular features. To 
demonstrate this, we performed nuclear segmentation and identi-
fied transcripts with preferential nuclear localization, by comparing 
RNAs associated with barcodes within or outside segmented nuclei 
(Supplementary Fig. 6e,f and Supplementary Table 8). Most of the 
186 genes identified as nucleus specific by both HDST and single-
nucleus RNA-Seq (Methods) were protein coding. Furthermore, 
HDST barcodes overlapping within segmented nuclei showed sig-
nificantly higher (P < 0.05, one-sided unpaired Welch’s t-test) ratios 
of intronic versus exonic reads. This analysis can be extended to 
other sub-cellular features imaged with dedicated stains (for exam-
ple, dendrites).

We related spatially assigned cell types to morphological layers 
(Fig. 1d,e, see Methods), finding layer-specific patterns for 15 of 63 
tested cell types, typically consistent between segments and lightly 
binned data. For example, an olfactory neuroblast population was 
enriched in the mitral (M/T) and external plexiform layers (EPL), 
inhibitory neurons in the deep granular zone (GCL-D), astroepen-
dymal cells in the subependymal zone (SEZ) and olfactory ensheath-
ing cells, vascular cells and satellite glia in the olfactory nerve layer 
(ONL). GABAergic, dopaminergic periglomerular and VGLUT1/2 
neuroblasts were found in the glomerular layer. Many of these asso-
ciations and classifications have previously been reported15,17, with 
inhibitory neurons dominating the granular (GCL-E, GCL-I and 
GCL-D) and internal plexiform (IPL) layers.

Relating histopathology and transcriptional profiles could help 
improve our understanding of disease biology and patient diagnosis 
and treatment. We assessed HDST’s clinical potential in a tumor 
section from a histological grade 3 breast HER2+ cancer patient 
(Fig. 2a, see Methods). We annotated clinically relevant morpho-
logical features in an H&E stain, and performed segmentation, dif-
ferential expression analysis and cell typing, leveraging published 
auxiliary breast cancer scRNA-Seq data18 (Supplementary Table 9). 
DE genes between morphological areas (Fig. 2b and Supplementary 
Fig. 7a,b) using smoothed and binned data (38.03 ± 23.6 UMIs per 
bin containing 6.1 ± 3.1 beads at 91% library saturation) revealed 
that invasive cancer-specific areas were high in KRT19 and ERBB2, 
as expected, but also in TMSB10, a marker promoting migration 
of breast cancer cells19 (Supplementary Tables 10 and 11). A sin-
gle cell type could be assigned to 59.8% of segments and 75.5% 

of bins driven by DE genes (Fig. 2c, Supplementary Fig. 7c and 
Supplementary Tables 12 and 13).

In conclusion, HDST is a high-definition method to measure 
in situ spatial information, at 1,400-fold higher resolution than ST, 
in healthy and pathological tissue. HDST is readily deployable as 
it relies on robust and commoditized tissue, molecular, bead-array 
and imaging modular tasks. Recently, Slide-Seq, a spatial RNA-Seq 
method with comparably low capture rates was developed20 with 
related features. However, Slide-Seq does not include histology, 
provides 25× lower resolution than HDST and has a higher rate of 
measurements confounded by signals from multiple cells. While 
HDST data is currently relatively sparse, signals are highly specific 
and interpretable by computational integration with morphologi-
cal features and single-cell profiles. Further HDST development 
will improve understanding of tissue organization and function in 
health and disease.

online content
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Fig. 2 | HDST distinguishes cell types and niches in a breast cancer resection. a, Labeling of morphological layers. HDST H&E image (left) of a breast 
cancer section and matching HDST (x,y) barcodes annotated into 13 morphological areas (right, color code). b, Layer-specific spatial DE patterns in HDST. 
Summed normalized expression of positively enriched signature genes significantly (FDR < 0.1, two-sided t-test) associated with each layer as in a. c, Cell-
type assignments by single nuclei as in a. Two enlarged regions (black and red squares) with H&E and color-coded segments.
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Methods
Bead production. We used a split-and-pool approach to generate a total of 
2,893,865 different quality controlled 2 μm silica beads. A primer precursor 
containing (1) the T7 promoter, (2) an Illumina sequencing handle and (3) a 
15 base pair (bp) ‘Spatial barcode pool’ and (4) a 7-bp ‘bridge’ oligonucleotide 
sequence (/AmC6/UUUUUGACTCGTAATACGACTCACTATAGGGACACGA
CGCTCTTCCGATCT-Spatial_barcode_Pool1-Bridge1) (IDT) were linked to the 
bead surface using amine chemistry14. To increase the bead pool size, we pursued 
two additional ligation steps adding 14- and 15-bp pools of spatial barcode 
sequences; for example, /Pho/Bridge2-Spatial_barcode_Pool2-Bridge3 was ligated 
to Bridge1 through a complementary Bridge1‘Bridge2’ 14-bp helper sequence. 
T4 DNA ligase (NEB), following the manufacturer’s protocol, was used to couple 
the second spatial oligonucleotide construct, which was added in a 2:1 ratio to 
the precursor oligonucleotide. In the second ligation, the ligated sequence ending 
with the Bridge3 sequence acted as the precursor for the next spatial barcode 
pool (/Pho/Bridge4-Spatial_barcode_Pool3 ligated through Bridge3′Bridge4′). 
Spatial_barcode_Pool3 was followed by a 5-bp unique molecular identifier and 20 
poly(d)TVN. The ligated Bridge1Bridge2 sequences read GACTTGTCTAGAGC 
and Bridge3Bridge4 TGATGCCACACTACTC. All sequences used in the split-
and-pool ligation steps (except the first precursor oligonucleotide containing the 
Spatial_barcode_Pool1) were synthesized on Illumina’s ‘Big Bird’ high-throughput 
oligonucleotide synthesis platform using phosphoramidite synthesis chemistry.

Array generation. The complete bead pool was used to load a total of 1,467,270 
individual hexagonal wells covering a 13.7 mm2 area (5.7 × 2.4 mm2). The wells 
were etched using a weak acid in a planar silica slide and polished to 1 μm height. 
A total of 24 such areas were made on each slide. The bead pool (~120 mg) was 
loaded in ethanol onto the planar slides with shaking. To ensure only one 2 μm 
bead would fit one well, the wells were etched at a diameter of 2.05 μm yielding a 
single bead per well coverage in over 99% of the wells.

Array decoding. Two sets of complementary and fluorescently labeled (FAM and 
Cy3) oligonucleotides were synthesized, deprotected and purified. An additional 
set of unlabeled but still complementary probes was made. Each decoder set 
represented an individual decoder pool (10 nM). A total of 14 different color-
coded (red, green and dark) pools were made. For example, if decoding 65 
spatial oligonucleotide barcodes (Spatial_barcode_Pool1), the first decoder pool 
contained oligonucleotides complementary to spatial barcodes 1–27 labeled with 
FAM, barcodes 28–54 labeled with Cy3 and finally oligonucleotides 55–65 with no 
color label attached. In the second decoding cycle, oligonucleotides complementary 
to spatial barcodes 1–9, 28–36 and 55–63 were labeled with FAM, oligonucleotides 
complementary to barcodes 10–18, 37–45 and 64–65 were labeled with Cy3, and 
the rest were unlabeled. The color scheme was cycled for another two cycles for 
decoding 65 oligonucleotides in a total of four cycles. The same approach was 
then repeated to decode 211 barcoded oligonucleotides (Spatial_barcode_Pool2) 
with five cycles and another five cycles to decode 211 barcoded oligonucleotides 
in Spatial_barcode_Pool3 for a total of 14 cycles. This decoding approach was 
conducted as previously published14 resulting in each (x,y) well position encoded 
with a combination of three colors (FAM, Cy3 and ‘dark’). Decoded arrays and 
(x,y) files were shared by Illumina. The decoding scheme and oligonucleotide 
sequences are proprietary as offered in the Illumina array product line.

Tissue samples. Adult C57BL/6J mice (at 12 weeks of age) were euthanized and 
their MOB dissected. The samples were then frozen in an isopentane (Sigma-
Aldrich) bath at −40 °C, and transferred to −80 °C for storage until sectioning. The 
frozen bulbs were embedded at −20 °C in Tissue-Tek OCT (Sakura). Cryosections 
were taken at 10 μm thickness. Breast cancer biopsies were snap frozen and 
embedded into OCT. Cryosections were taken at 16 μm thickness. This study 
complied with all relevant ethical regulations regarding experiments involving 
animal and human tissue samples.

Tissue staining and imaging. Tissue sections were first adhered to the surface 
by keeping the slide at 37 °C for 1 min. A fixation step on the slide surface was 
performed using 4% formaldehyde (Sigma-Aldrich) in 1× phosphate buffered 
saline (PBS, pH 7.4) for 10 min at room temperature. The sections were stained 
using standard H&E staining, as previously described12, and ×20 imaged with a 
Ti-7 Nikon Eclipse.

RNA-Seq library preparation and sequencing. We followed a protocol as 
described in Ståhl et al.12 and Salmén et al.21. Briefly, tissue sections were 
permeabilized using exonuclease I buffer (NEB) for 30 min at 37 °C and 0.1× 
pepsin (pH 1) for 10 min at 37 °C, followed by in situ complementary DNA 
synthesis overnight at 42 °C using Superscript III supplemented with RnaseOUT in 
1X FS buffer, 5 mM DTT, 0.5 mM dNTP mix (all from ThermoFisher Scientific), 
50 µg ml−1 actinomycin D in 1% DMSO (Sigma-Aldrich) with 0.19 mg ml−2 BSA 
(NEB). For breast cancer samples, the tissue permeabilization steps included a 
20 min tissue incubation with 14 U collagenase I in Hank’s balanced salt solution 
(ThermoFisher Scientific) followed by digestion with 0.1× pepsin (pH 1) for 10 min 
at 37 °C. Tissue sections were digested after cDNA synthesis using proteinase K 

(Qiagen) for 1 h at 56 °C and the barcode-transcript information cleaved using 
a USER (NEB) (for 2 h at 37 °C). The material was processed into libraries as 
described in Jemt et al.22 and 1.08 pM sequenced on an Illumina Nextseq 500 
instrument with v2 chemistry using paired-end 300-bp reads (R1 125 bp and R2 
175 bp for MOB; R1 150 bp with R2 150 bp for the breast cancer samples).

HDST data pre-processing. FASTQ files were processed using the ST Pipeline 
v.1.5.1 software23. The forward read contained both the barcode the bridge 
sequences and were trimmed retaining the following bases: 1–15, 31–45 and 
61–76. This created a forward read containing only a spatial barcode followed by a 
UMI. R2 transcripts were mapped with STAR24 to the mm10 mouse or GRCh38.79 
human reference genomes. Mapped reads were counted using the HTseq count 
tool25 ‘gene’ feature. Spatial barcodes were demultiplexed using an implementation 
of TagGD26 as described23. We allowed a 2-bp ‘padding’ overhang on the total 
length of the spatial barcode enabling correction for either a 1 bp insertion or 
deletion error at the beginning or end of the barcode sequence. Demultiplexing 
was based on building a hashmap of 11-bp k-mers. All barcodes were then 
compared allowing a Hamming distance of four mismatches. UMI (77–82 bp in 
R1) duplicated sequences paired to the annotated reads were collapsed using a 
hierarchical clustering approach. All UMIs, with allowing for one mismatch, were 
clustered using the spatial barcode, mapped gene locus (with a window offset of 
250 bp; refs. 25,27) and strand information.

Histological image processing. To relate the histological image and the counts 
matrix, we assigned image pixel coordinates to the centroid of each bead well28. 
First, we detected the arrays’ boundaries and corners, and assumed a perfect 
hexagonal well matrix distribution. We then translated pixel coordinates into 
fixed centroid (x,y) coordinates using the total detected area of the array. Well 
coordinates detected under the tissue boundaries were used in further analysis.

Image annotation. Images used in the study were annotated with an interactive 
user interface for selecting spatial barcodes and their (x,y) coordinates based on 
the tissue morphology. Each (x,y) barcode position could be assigned to one or 
more of the nine distinct regions in the mouse olfactory bulb: ONL, granular cell 
layer external (GCL-E), granular cell layer internal (GCL-I), granular cell zone 
deep (GCL-D), EPL, M/T, IPL, SEZ and GL. For HDST MOB annotation, exactly 
one regional tags was assigned to one (x,y) spatial barcode. For ST, more than one 
tag could be assigned per (x,y) spatial spot location. For breast cancer histological 
sections, we used six areas: invasive cancer, fatty tissue, fibrous tissue, normal 
glands, vascular space and immune/lymphoid cells with allowance for multiple 
region assignments. If a barcode position was not covered by an annotation 
polygon, the position was assigned to the closest polygon in cases where the 
unassigned barcode was within a 5 pixel distance.

H&E image segmentation for single-cell identification. Single-cell segmentation 
based on the H&E image was done by combining Ilastik v.1.3.2 (ref. 29) and 
CellProfiler v.3.1.8 (ref. 30). In Ilastik, we trained a random forest classifier to 
identify two distinct classes (nuclei and background). Based on this, we were  
able to predict and export probability maps for the nuclei. We used CellProfiler30  
to segment the probability maps and identify single-cell masks for  
downstream analysis.

smFISH data processing. Previously published and processed MOB smFISH 
data12 was used in the analysis. Briefly, a 10 µm section was attached to a cover slip 
and the tissue was stained with 250 nM fluorescent label probes (LGC Biosearch 
Technologies) for three of the genes (Penk, Slc17a7 and Fabp7) diluted in staining 
buffer31 and a counterstain with Hoescht applied. z-stacks were imaged at 0.3 µm 
distance on a Nikon Ti-E. The images were stitched in Fiji32. Three replicate regions 
of interest corresponding to 100 µm (in diameter) were randomly placed in three 
layers of the olfactory bulb: granular layer, glomerular layer and ONL. To estimate 
the average number of nuclei present per one region of interest in each layer, we 
used a grid approach on our histological image and counted detected nuclei. We 
then estimated the number of RNA spots per nucleus for each region and layer. 
These averaged RNA counts were compared to UMI counts in the HDST data 
averaged again per nucleus for each region and layer. Data was adjusted for the 
effective bead packing density and average number of beads lost at demultiplexing 
after sequencing. The average number of RNAs per one HDST bead were finally 
compared to smFISH counts for the same sized area.

Binning of HDST data. We divided the total area of each HDST array into 
nonoverlapping bins, each covering an area of X × X beads, where X ∈ {5,38}, 
and summed the UMIs of beads within each spatial bin. To ensure appropriate 
bin sizes, we first considered all manufactured wells as a 1,918 × 765 matrix. On 
average, around 1,370 (x,y) wells filled with beads would size up to one ST spot 
(100 μm; X = 38) when taking into account the center-to-center distance between 
two wells. We took the binned data containing 1,370 wells per bin and took every 
second bin into account in both x and y directions. This was to ensure space 
between two ST spots would be accounted for. This bin size was called ‘ST-like’ 
in all further analyses. We did not take into consideration that this bin actually 
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represents 63% of the transcriptome profiled per ST spot due to space between two 
hexagonal wells. Second, we made bins with fewer wells per bin in a logarithmic 
manner until reaching the smallest bin (5×). The 5× bin was referred to as single 
cell like of ‘sc-like’.

Spatial differential expression analysis. Binned 5× data was smoothed using 
a Gaussian kernel (5 × 5) with 0.5 standard deviations equally in both x and y 
directions. The smoothed binned data was then scaled for purposes of visualization 
such that the maximum expression value stayed the same. We performed a two-
sided t-test to identify DE genes for each HDST morphological region (one versus 
the rest). The genes with a log2(fold change) > 1.5 and FDR < 10% were identified 
as DE and used in further analyses. The Scanpy package was used for visualization 
and differential expression analysis33.

Validation of DE genes. To validate layer-specific gene expression in the HDST 
data, we performed enrichment analysis using layer-specific gene sets from the 
ABA as reference. Layers annotated in both datasets were used in the analysis with 
all HDST granular layers merged into one instance to be comparable to the data 
provided in the ABA. Genes with a layer-specific log2(fold change) > 1.5 (indicating 
upregulation) and FDR < 5% were tested for enrichment in the layer-specific 
gene sets (‘expression fold’ change greater than 1.5) from the ABA. Only genes 
passing the respective fold-change thresholds in both datasets were included in 
the analysis. Images for the top gene present in each layer were downloaded from 
ABA’s High-Resolution Image Viewer and stitched using Fiji32.

Assessing nuclear RNAs in HDST data. Single-cell and single-nucleus data from 
the mouse (10x Chromium 3 v.2 sequencing) from the M1 region on the mouse 
brain was downloaded from www.biccn.org. BICCN data, tools and resources 
are released under the Creative Commons Attribution 4.0 International (CC 
BY 4.0, https://creativecommons.org/licenses/by/4.0/legalcode) License. The 
single-cell dataset was published from the U19 Zeng team (1U19MH114830-01) 
and the single-nucleus dataset from the U19 Huang team (1U19MH114821-01). 
Then, 50,000 randomly selected single nuclei and cells were used in downstream 
analysis. HDST data were split into two sets, based on whether the respective (x,y) 
coordinate overlapped or not the segmented nucleus. We then identified those 
genes in each of the subsets that are present in either nuclei or cells. We observed 
186 genes (128 protein coding, 58 noncoding) that are expressed exclusively in 
single-nucleus data and whose HDST barcodes are present in segmented nuclei. 
Furthermore, we calculated the ratio of intronic and exonic reads using a reference 
which contains both introns and exons in the alignment and an exon-only 
reference, respectively. The barcodes that overlap with nucleus segmentations 
(n = 36,722) showed significantly higher (intron + exon)/exon log-ratios than rest 
of the barcodes (n = 75,887) (log-transformed total UMIs in nuclear barcodes: 
0.04807 ± 0.1507 (mean ± s.d.), nonnuclear barcodes: 0.0461 ± 0.1475 (mean ± s.d.), 
P = 0.017, one-sided unpaired Welch’s t-test).

Cell type assignment to HDST barcodes. For analysis of MOB data, we 
downloaded the matrix containing mean expression values x per cell type j from 
Zeisel et al.17 using the loompy package (https://github.com/linnarsson-lab/
loompy). We subsetted the matrix to contain only cell types annotated in the 
olfactory bulb and nonneuronal cell types for a total of 63 cell types. For analysis of 
HDST breast cancer data, we downloaded the expression matrix for a triple negative 
breast cancer single-cell RNA-Seq dataset18 from GEO (GSE118389) and calculated 
mean expression values x per cell type j for all genes contained in the matrix. Cell 
type annotations were obtained from the study’s GitHub repository (https://github.
com/Michorlab/tnbc_scrnaseq/blob/master/data/cell_types_tab_S9.txt).

The vector of probabilities Θj of each gene being captured in a cell type j is 
defined as follows:

Θj ¼ θ1j;   ; θkj
 T¼ x1jPk

i¼1 xij
; :::;

xkjPk
i¼1 xij

 !

where i is the gene, j is the cell type, k is the total number of genes and x is the mean 
expression.

We calculate the likelihood L of the cell type j specified by Θj, given the 
observed UMIs b per gene for a HDST (x,y) barcode as follows:

L Θjjb
� �

¼ n!
b1!    bk!

´ θb11j    θbkkj

where b is the vector of UMI counts per gene for an individual HDST (x,y) profile 
and n is the total number of UMIs for an individual HDST (x,y) profile.

For each HDST (x,y) and cell type j, we calculated the ratio between the 
likelihood of that cell type Lj and the likelihood of the most likely cell type Lmax as a 
measure to assess how good the secondary cell type assignments are compared to 
the most likely cell type (primary assignment):

LR ¼ Lj
Lmax

For each HDST (x,y) and cell type j, we calculated the posterior probability; 
that is, the normalized likelihood LN as the ratio between the likelihood of that cell 
type Lj and the sum of all likelihoods for that barcode Ltot as a measure to assess 
how distinct each assignment is compared to all others:

LN ¼ P cjjb
� �

¼ P bjcj
� �

P cj
� �

P bð Þ ¼ Lj
Ltot

where P(cj) denotes the uniform prior for cell type j. P(cj|b) and P(b|cj) represent 
the posterior probability and the likelihood, respectively. P(b), the evidence term, is 
defined as P

ci
P bjcið ÞP cið Þ

I

 and used for the normalization.

Finally, to test against the null-hypothesis that HDST (x,y) expression profiles 
originate from random expression profiles for each cell type j and respective 
Θj, we retained only nonzero elements of each Θj and shuffled them in 1,000 
iterations while keeping the distribution of UMIs b as in the corresponding HDST 
(x,y) expression profile. We then calculated the randomized likelihood Lrand for 
each HDST (x,y), cell type and iteration. Finally, an empirical P value pemp was 
calculated for each HDST (x,y) and cell type assignment as the fraction of Lrand that 
yielded a likelihood higher or equal to the cell type likelihood Lj multiplied by the 
probability of drawing only nonzero values from Θj given b, with correction for 
multiple testing (Benjamini–Hochberg). For each HDST (x,y) the cell type with 
the highest likelihood (LR = 1) was considered the primary assignment and all cell 
types with LR ≥ 0.8 were considered secondary assignments. Finally, for a cell type 
assignment to be considered valid, we required LN ≥ 0.1 and Pemp ≤ 0.01 for MOB 
and LN ≥ 0.7 and Pemp ≤ 0.05 for breast cancer. For further analysis only HDST (x,y) 
with exactly one valid cell type assignment were considered. Cell type assignments, 
ratios and the empirical P values for all HDST (x,y), segmented and binned 
MOB profiles have been reported in Supplementary Tables 5 and 6. Differential 
expression analysis was carried out between the cell types using two-sided t-test 
(log2(fold change) > 1.5 and FDR < 10%).

Auxiliary data pre-processing. Public bulk RNA-Seq datasets12 were downloaded 
from NCBI’s SRA with accession PRJNA316587, mapped to the mm10 reference 
and UMI filtered using the ST Pipeline v.1.3.1. Averaged and naively adjusted34 
bulk gene expression signatures were compared to those of the three replicates 
created with HDST and normalized the same way. ABA gene lists were 
downloaded from the ABA API using the ConnectedServices module of the 
allensdk Python package v.0.16.0. The standard ST data as a counts matrix was 
downloaded from http://www.spatialtranscriptomicsresearch.org/.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw mouse data have been deposited to NCBI’s GEO archive GSE130682. Raw 
files for the breast cancer sample are available through an MTA with Å. Borg (ake.
borg@med.lu.se). All processed data is available at the Single Cell Portal (https://
portals.broadinstitute.org/single_cell/study/SCP420).

Code availability
All code has been deposited on GitHub at https://github.com/klarman-cell-
observatory/hdst.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Standard Illumina processing pipelines were used to collect pair-end sequencing data on a Nextseq 550 instrument. The BCL files from 
the sequencer were deposited in a NAS server where they were encrypted and sent to a backup server. The BCL files were then sent to a 
demultiplexing server where they were demultiplexed with bcl2fastq v2.17.1.14. The demultiplexed files were then sent to an analysis 
server where they merged by index prior analysis with the ST Pipeline (v1.5.1).

Data analysis For initial ST data processing, ST pipeline v1.5.1 was used. The pipeline includes the following packages: nvoke, argparse, cython>=0.19, 
numpy, pandas, scipy, sqlitedict, regex, taggd>=0.3.1 HTSeq>=0.7.1, pysam>=0.7.4, setuptools. For segmentation analysis, we used Ilastik 
v1.3.2 and CellProfiler v3.1.8. All computer code relevant to the file post processing, image alignment, DE and cell typinganalysis has 
been deposited on GitHub at https://github.com/broadinstitute/hdst.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The raw mouse data has been deposited to NCBI’s GEO archive GSE130682. Raw files for the breast cancer sample are available through an MTA with Åke Borg 
(ake.borg@med.lu.se). Please note all confidential decoder sequences as proprietary to Illumina Inc were removed from raw files and substituted with a random 
string of the same length. All processed data is available on the Single Cell Portal (https://portals.broadinstitute.org/single_cell/study/SCP420/).
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Three mice of the same age and strain were used in the analysis. Three replicate sections from the same human sample were used in the 
analysis. In previous experimental designs and studies, we observed minimal variability for the obtained phenotypes among different samples 
on individually performed experiments using individual ST slides so we reasoned n=3 ( "n" indicates distinct samples ie HDST arrays and 
tissues) will be sufficient to determine method robustness as described in the article. 

Data exclusions No data was excluded from the analysis.

Replication Three mice of the same age and strain were used in the analysis. Three replicate sections from the same human sample were used in the 
analysis. The experiments  have been independently experimentally repeated a minimum of three times. Each experimental repetition have 
been performed on at least two independent slides. In all the attempts at repetition for each specific condition we observed similar behavior 
concerning the spatial localization of the markers analyzed.

Randomization Not relevant for the study. 

Blinding Not relevant for the study. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Adult C57BL/6J mice (at 12 weeks age). Replicate#1 was male (mouse#1) and Replicate#2 and Replicate#3 were females (mouse 
#2). The metadata associated with all samples have been reported in the GEO metadata format and is reported with the study. 

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight This study complied with all relevant ethical regulations regarding experiments involving animal tissue samples. Ethical permit 
(N155-16) for animal work was granted by the Regional Ethics Committee of Sweden.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics Three replicate sections from the same human sample were used in the analysis. Patient had the following metadata associated: 
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Population characteristics T1 (<20mm), lymph node-positive, histological grade 3, ER+, HER2+. The patients was a 70 years old female.

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and how 
these are likely to impact results.

Ethics oversight This study complied with all relevant ethical regulations regarding experiments involving human tissue samples and samples 
were collected with informed consent. Ethical permission (Dnr 2009/658 and Dnr LU240-01) for the human sample used in this 
study was granted by the Regional Ethics Committee of Sweden at the Lund University Hospital.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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