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IMPORTANCE PD-L1 (programmed cell death ligand 1) immunohistochemistry (IHC),
tumor mutational burden (TMB), gene expression profiling (GEP), and multiplex
immunohistochemistry/immunofluorescence (mIHC/IF) assays have been used to assess
pretreatment tumor tissue to predict response to anti–PD-1/PD-L1 therapies. However,
the relative diagnostic performance of these modalities has yet to be established.

OBJECTIVE To compare studies that assessed the diagnostic accuracy of PD-L1 IHC, TMB,
GEP, and mIHC/IF in predicting response to anti–PD-1/PD-L1 therapy.

EVIDENCE REVIEW A search of PubMed (from inception to June 2018) and 2013 to 2018
annual meeting abstracts from the American Association for Cancer Research, American
Society of Clinical Oncology, European Society for Medical Oncology, and Society for
Immunotherapy of Cancer was conducted to identify studies that examined the use of PD-L1
IHC, TMB, GEP, and mIHC/IF assays to determine objective response to anti–PD-1/PD-L1
therapy. For PD-L1 IHC, only clinical trials that resulted in US Food and Drug Administration
approval of indications for anti–PD-1/PD-L1 were included. Studies combining more than 1
modality were also included. Preferred Reporting Items for Systematic Reviews and
Meta-analysis guidelines were followed. Two reviewers independently extracted the
clinical outcomes and test results for each individual study.

MAIN OUTCOMES AND MEASURES Summary receiver operating characteristic (sROC) curves;
their associated area under the curve (AUC); and pooled sensitivity, specificity, positive and
negative predictive values (PPV, NPV), and positive and negative likelihood ratios (LR+ and
LR−) for each assay modality.

RESULTS Tumor specimens representing over 10 different solid tumor types in 8135 patients
were assayed, and the results were correlated with anti–PD-1/PD-L1 response. When each
modality was evaluated with sROC curves, mIHC/IF had a significantly higher AUC (0.79)
compared with PD-L1 IHC (AUC, 0.65, P < .001), GEP (AUC, 0.65, P = .003), and TMB (AUC,
0.69, P = .049). When multiple different modalities were combined such as PD-L1 IHC and/or
GEP + TMB, the AUC drew nearer to that of mIHC/IF (0.74). All modalities demonstrated
comparable NPV and LR−, whereas mIHC/IF demonstrated higher PPV (0.63) and LR+ (2.86)
than the other approaches.

CONCLUSIONS AND RELEVANCE In this meta-analysis, tumor mutational burden, PD-L1 IHC,
and GEP demonstrated comparable AUCs in predicting response to anti–PD-1/PD-L1
treatment. Multiplex immunohistochemistry/IF and multimodality biomarker strategies
appear to be associated with improved performance over PD-L1 IHC, TMB, or GEP alone.
Further studies with mIHC/IF and composite approaches with a larger number of patients will
be required to confirm these findings. Additional study is also required to determine the most
predictive analyte combinations and to determine whether biomarker modality performance
varies by tumor type.
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S ubstantial effort is ongoing to identify predictors of
response and resistance to anti–PD-1/PD-L1 (anti–
programmed cell death 1/programmed cell death

ligand 1) immunotherapy. Expression of PD-L1 protein was the
first candidate biomarker associated with response to anti–
PD-1 therapy.1,2 Multiple PD-L1 immunohistochemistry (IHC) as-
says have been approved by the US Food and Drug Administra-
tion (FDA) as a companion or complementary diagnostic for
patients with non–small cell lung cancer (NSCLC), melanoma,
bladder cancer, gastric cancer, and cervical carcinoma to help
preselect patients for anti–PD-1/PD-L1 therapy.3,4 These IHC
assays have been used to stratify patients in clinical trials. Posi-
tive PD-L1 IHC has also recently been shown to enrich for re-
sponse to combination therapy with anti–PD-1/cytotoxic
T lymphocyte antigen-4 in patients with NSCLC.5 However,
although PD-L1 expression has been shown to correlate with
response to therapy in certain tumor types, the association is
not absolute. As a diagnostic assay, PD-L1 IHC has several limi-
tations: multiple different assays are available, the predictive
significance of tumor cell vs immune cell expression varies by
tumor type,6 the scoring of immune cell PD-L1 expression by
pathologists has poor interobserver reproducibility,7 and the
PD-L1 expression is commonly reduced to a digital readout
(+ vs −) without assessing its expression in the greater context
of the tumor microenvironment (TME) (eg, association with
immune cells suggests an adaptive pattern of expression).8,9

More recent biomarker approaches include assessing tu-
mor mutational burden (TMB), gene expression profiling (GEP),
and quantifying multiple proteins using multiplex IHC/
immunofluorescence (mIHC/IF). The assessment of TMB as a
biomarker for response sensitivity to immunotherapy is predi-
cated on the concept that more mutations yield more T cell–
recognized tumor neoantigens, potentially resulting in stron-
ger antitumor immune responses when the PD-1 checkpoint is
blocked.10 Tumor mutational burden was first shown to be as-
sociated with response to cytotoxic T lymphocyte antigen-4
blockade in patients with melanoma,11 followed by patients with
NSCLC treated with anti–PD-1 therapy (pembrolizumab),12 and
now extends to numerous solid tumor types.13

Gene expression profiling allows for the simultaneous
assessment of a number of parameters. The mRNA transcript
levels of inflammatory genes, immune checkpoint genes,
and even oncogenes have been included in various gene
panels. This approach has a continuous output and has been
used to develop “response signatures” for several tumor
types, most of which include an interferon (IFN) gamma
gene signature as a major pillar of the assay.14 However, this
approach lacks information on cellular coexpression and
geography within the TME. In contrast, mIHC/IF allows for
the simultaneous visualization of multiple IHC/IF protein
markers in situ on the same tissue section. As such, it pro-
vides a spatial component that can be used to generate cell
density metrics for a given tissue region or to assess the dis-
tance between 2 given cell types. Coexpression of multiple
markers on a single cell can also be readily visualized. Simi-
lar to PD-L1 IHC, TMB, and GEP, mIHC/IF assays have now
been associated with response to anti–PD-1/PD-L1 therapies
in multiple different tumor types.9,15-17

The purpose of the current analysis was to compare exist-
ing data on the diagnostic accuracy of PD-L1 IHC, TMB, GEP,
and mIHC/IF biomarker modalities in predicting response to
anti–PD-1/PD-L1 therapy. We performed a meta-analysis using
summary receiver operating characteristic (sROC) curves to de-
termine the relative area under the curves (AUCs) as a global
metric of each approach’s ability to discriminate between re-
sponders and nonresponders to therapy. We also determined
the relative sensitivity, specificity, predictive values, and
likelihood ratios of these emerging approaches and com-
pared them with PD-L1 IHC and each other.

Methods
This meta-analysis was conducted in adherence to the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
analysis (PRISMA) statement.18 Two independent reviewers
(S.L. and J.E.S.) performed the literature search, assessed eli-
gibility criteria, and performed data extraction (S.L. and D.W.W.).

Search Strategy
The DailyMed website19 was used to identify clinical trials that
tested PD-L1 status for an association with response to therapy
using IHC and were cited in association with FDA–approved
indications for nivolumab, pembrolizumab, atezolizumab, dur-
valumab, and avelumab monotherapies. The national clini-
cal trial number was gathered and PubMed was searched to
identify the associated clinical trial report.

For all other assay modalities, predefined search criteria
were used to conduct electronic searches of PubMed (from
inception to June 2018). Searches were limited to human stud-
ies with English translation available. The search syntax in-
cluded the following terms: (mutational burden OR muta-
tional load OR mutational density OR mutational landscape
OR genomic landscape OR whole exome sequencing OR gene

Key Points
Question What is the relative diagnostic accuracy of different
biomarker assay modalities in predicting clinical response to
anti–PD-1/PD-L1 (programmed cell death 1/programmed cell death
ligand 1) therapy?

Findings In this systematic review and meta-analysis involving
tumor specimens from 8135 patients, multiplex
immunohistochemistry/immunofluorescence (mIHC/IF) had
significantly higher diagnostic accuracy than PD-L1 IHC, tumor
mutational burden, or gene expression profiling in predicting
clinical response to anti–PD-1/PD-L1 therapy and was similar to
multimodality cross-platform composite approaches, such as
PD-L1 IHC + tumor mutational burden.

Meaning Multiplex immunohistochemistry/IF facilitates
quantification of protein coexpression on immune cell subsets and
assessment of their spatial arrangements; initial findings suggest
that mIHC/IF has diagnostic accuracy comparable to multimodality
cross-platform composite approaches in predicting response to
anti–PD-1/PD-L1.
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expression profiling OR gene signature OR mRNA OR multi-
plex immunofluorescence OR multiplex immunohistochem-
istry OR spatial profiling) AND (anti-PD-1 OR anti-PD-L1 OR
nivolumab OR pembrolizumab OR atezolizumab OR dur-
valumab OR avelumab OR BMS-936558 OR BMS-936559 OR
MK-3475 OR MPDL3280A OR MEDI4736 OR MSB0010718C).
In addition, the 2013 to 2018 annual meeting abstracts from
the American Society of Clinical Oncology, the European
Society for Medical Oncology, the Society for Immuno-
therapy of Cancer, and the American Association for Cancer
Research were searched using the keywords “nivolumab,”
“pembrolizumab,” “atezolizumab,” “durvalumab,” and
“avelumab.” A second search was performed in November
2018 for the definitive manuscript related to abstracts identi-
fied during the June 2018 search, and the extracted data was
updated to reflect the final publication. Several experts in the
field were also surveyed to determine if there were any addi-
tional publications or conference abstracts that were not
revealed by the electronic search.

Eligibility Criteria
Studies that correlated pretreatment tissue-based biomarkers
of interest with objective response rate (ORR) (ie, complete re-
sponse and partial response), progression free survival (PFS),
or overall survival (OS) were included if they had at least 15 pa-
tients treated with anti-PD-1/PD-L1 monotherapy. Tumor
mutational burden, GEP, and mIHC/IF studies that enrolled pa-
tients based on PD-L1 status were excluded from all of the single-
modality assay approaches but were included in the multimo-
dality group if they met all other criteria. Studies involving
patients with hematologic cancers and flow cytometry studies
on tumor lysates were also excluded. When studies were iden-
tified with overlapping participants, the study with the largest
tested population was included.

Data Extraction and Calculation
of Diagnostic Accuracy Measures
The following data categories were extracted from the in-
cluded studies: study name, national clinical trial number,
therapy received, biomarkers tested, number of patients tested
with each biomarker, and the year of publication or confer-
ence presentation. Biomarker results (+ vs −) as they related to
objective response to therapy were extracted for each study and
used to generate a 2 by 2 contingency table showing true-
positive, false-positive, true-negative, and false-negative test
results for each study. These values were used to calculate sen-
sitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), positive likelihood ratio (LR+), and nega-
tive likelihood ratio (LR−).

In 7 of 56 analyses, ORR was not provided, and OS was
gathered.17,20-23 In 2 instances, OS was not available, and PFS
was used.24,25 When using OS or PFS, sensitivity and speci-
ficity values were calculated at 6 months, 1 year, and 2 years.
The Youden statistic (a measure of informedness) was calcu-
lated to determine the optimal time point for each individual
study that maximized sensitivity and specificity. This point
was then included in the meta-analysis to allow the best pos-
sible representation for each study. For PD-L1 IHC studies, if

multiple thresholds of assay positivity were presented, the
FDA-approved cutoff point for the associated companion/
complimentary diagnostic for that indication was used. For
1 study in which multiple cutoff points were presented,
there was no accompanying PD-L1 IHC diagnostic for that
indication. In that instance, the Youden statistic was also
performed, and the best performing threshold was chosen.

Statistical Analysis
The calculated sensitivity and specificity from each indi-
vidual biomarker analysis were plotted, and a curve was fit
to the points using both weighted and unweighted linear
regression models. For the weighted approach, the hierar-
chical DerSimonian and Laird method was used; the Moses-
Littenberg model was applied for the unweighted approach.
The sROC curves and the resultant AUC were used to mea-
sure the association between the different assay modalities
and ORR. The AUCs were compared for statistically signifi-
cant differences using the Hanley and McNeil method.26

When TMB raw data were available, the upper tertile of TMB
vs the lower 2 tertiles within a given study were evaluated
against response.24,27

For each modality, the measures of diagnostic accuracy
were pooled to generate an overall metric allowing for com-
parisons between each modality (eg, pooled sensitivity for
PD-L1 IHC vs pooled sensitivity for GEP). Because method-
ological heterogeneity between included studies was antici-
pated, a random-effects model was used for pooling the ana-
lyzed parameters. Possible publication bias was assessed
by examining a funnel plot of the effect size for each study
against the reciprocal of its standard error (metaphor pack-
age in R28).

The dedicated meta-analysis software Meta-DiSc was used
for evaluation of the various biomarker tests.29 All statistical
tests were 2-sided and P < .05 was considered statistically
significant. A Bonferroni correction was applied to account
for multiple comparisons.

Results
Search Results
The search strategy identified 45 eligible reports that assayed
either PD-L1 IHC (n = 24),20,30-51 TMB (n = 10),12,13,16,17,21,22,52-56

GEP (n = 9),13,21-23,40,54,57-59 mIHC/IF (n = 7),9,15-17,25,60,61 or mul-
timodality (PD-L1 IHC + TMB and/or GEP, n = 6)13,24,52,59 and
correlated the results with response to anti–PD-1/PD-L1 therapy
(Figure 1 and eTable 1 in the Supplement). Eleven studies re-
ported either multiple different clinical study cohorts or more
than 1 of the individual biomarker approaches, resulting in a
total of 56 individual analyses. eTable 2 in the Supplement pro-
vides a summary of study size, median patient age, sex,
tumor stage, tumor type, treatment, ORR, and assay perfor-
mance characteristics for each trial. Clinical covariates such as
age, sex, tumor stage, and tumor type did not vary between
assay modalities (eFigure 1 in the Supplement). In total, speci-
mens from 8135 patients with more than 10 different solid
tumor types are represented in the meta-analysis.
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sROC Curves
The derived sensitivity and 1-specificity values from each re-
port were plotted, Figure 2A. The points were fitted with sROC
curves using 2 different approaches: 1 that weighted each study
by the number of patients enrolled, and 1 in which each study
was given equal weight. By weighted sROC curves, mIHC/IF had
a significantly higher AUC (0.79) than PD-L1 IHC (0.65, P < .001),
GEP (0.65, P = .003), and TMB (0.69, P = .049) (Figure 2B). Nei-
ther TMB nor GEP had an AUC profile that significantly dif-
fered from that of PD-L1 IHC. Most of the GEP studies included
an IFN gamma gene signature. However, the broad category of
GEP as reported herein also includes reports of other gene sig-
natures associated with therapeutic resistance (Nos. 35 and 42
in eTable 1 in the Supplement). When those reports were ex-
cluded, the sROC curve AUC for only IFN gamma–based GEP
studies was 0.65. When each reported study was given equal
weight, irrespective of the number of patients enrolled, the rela-
tive AUC results remained consistent (Figure 2C). Similarly, when
the 9 (16%) of 56 analyses17,20-25 with ORR imputed from OS/
PFS data were excluded from the analysis, the AUC results re-
mained consistent (eFigure 2 in the Supplement).

Approaches that combined variables across multiple plat-
forms were also explored. The sROC curves from the multi-
modality biomarkers approached the AUC of mIHC/IF (0.74 vs
0.79, P = .48) (Figure 3). This supports earlier findings show-
ing that measures of an “inflamed” TME combined with TMB
have additive prognostic or PV over either parameter alone.13,62

Analyses of Stable Disease, Tumor Type,
and TMB Thresholds
Of 47 studies that reported ORR, 45 (96%) included stable dis-
ease (SD), with progressive disease (PD) reported under the
heading of “nonresponders.”9,12,13,15,30-61 Of the 18 studies
that reported SD as a separate category that could be
reanalyzed,9,12,36,38-41,44,47,49,51,52,55,56,58,61 we compared the
sROC curves for each modality when SD was included with
responders rather than with PD, and the resulting AUCs did
not noticeably differ (eFigure 3 in the Supplement). Sub-
group analysis by tumor type was also performed (eFigure 4
in the Supplement), but a larger number of studies will be nec-
essary to resolve any potential differences in assay modality
performance by tumor type.

Subgroup analysis was also performed on the study co-
horts that assessed for TMB to explore the influence of vari-
ous approaches used for thresholding cases into high TMB vs
low TMB categories. The original analysis was performed using
the threshold of positivity set by each individual study. For the
6 of 10 studies that had raw data available, we used a uniform
thresholding approach, whereby the upper tertile of TMB was
considered a positive test and the remainder was considered
a negative test.12,17,52,54-56 In this subset of cases, the profiles
of the sROC curves for TMB were not noticeably affected by
the use of a uniform approach, with AUCs of 0.71 in both
analyses (eFigure 5 in the Supplement).

Additionally, although studies focused on microsatellite
instability (MSI) were not included in this meta-analysis, a
study reporting MSI as a predictor of response to anti–PD-1/
PD-L1 therapy63 is included alongside the mIHC/IF data points
and sROC curves for comparison (eFigure 6 in the Supple-
ment) and demonstrates that mIHC/IF assays may have sen-
sitivity and specificity similar to that of MSI status when pre-
dicting response to anti–PD-1/PD-L1 therapy. Similarly, a study
that included a machine learning component for biomarker
discovery using TMB and GEP data64 is shown in eFigure 6 in
the Supplement for interest. The high sensitivity and speci-
ficity achieved in that study suggests that machine learning
algorithms may further improve diagnostic accuracy.

PVs and LRs
The PPV and NPV for each study are plotted in Figure 4A and
eFigure 7 in the Supplement. Most modalities provide rela-
tively high NPV. PD-L1 immunohistochemistry, GEP, and
multimodality biomarkers have relatively low PPV. In con-
trast, mIHC/IF assays consistently demonstrate a high PPV
(Table). The PPV and NPV plots for NSCLC, melanoma, and
urothelial carcinoma are shown separately in eFigure 4 in
the Supplement.

The pooled LRs for each modality are shown in Figure 4B
and eTable 3 in the Supplement. Multiplex immunohistochem-
istry/IF and the multimodality biomarkers have LRs+ that are
significantly higher than those of PD-L1 IHC (2.86 and 2.76, re-
spectively, vs 1.51), indicating that they are less likely to pro-
duce a false-positive result. The pooled LRs− for GEP (0.65),
TMB (0.62), PD-L1 IHC (0.69), and multimodality approaches
(0.60) were essentially equivalent. The mIHC/IF studies dem-
onstrated a trend toward an improved LR− compared with the

Figure 1. PRISMA Flowchart

135 Records identified
through database 
searching

98 Additional records 
identified through
searches of meeting 
abstracts

25 Additional records 
identified through 
DailyMed search

15 Duplicate records 
removed

243 Records screened

45 Publications included in quantitative 
synthesis (meta-analysis) with 
56 individual analyses

198 Records excluded
Reasons for exclusion
4

28
17
72

8
13
13
43

Study not an original 
investigation (ie, review,
comment)
No PD-L1–treated population
<15 Patients
No ORR and/or OS/PFS 
reported
Hematologic malignancies
Blood-based profiling
Studies on tumor lysates
Repeat presentations of 
participants captured by 
another study

eTable 1 in the Supplement lists the included studies. PD-L1 indicates
programmed cell death ligand 1; PFS, progression-free survival;
ORR, objective response rate; OS, overall survival.
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other modalities, although this difference was not statisti-
cally significant.

Pooled Sensitivity and Specificity
The pooled sensitivity and specificity for each modality are
summarized in the Table. Gene expression profiling and
mIHC/IF have improved sensitivity compared with that of
PD-L1 IHC, whereas TMB, mIHC/IF, and multimodality have
improved specificity. Gene expression profiling actually has
a lower specificity for response than PD-L1 IHC. It is not
immediately clear why this is the case, especially because
many of the GEP panels detect PD-L1 RNA. Possible explana-
tions include a lack of correlation between RNA and protein
levels for the markers of interest or the fact that RNA is less
stable than protein and thus is harder to preserve and later
detect as an analyte. In addition, protein-based measure-
ments are commonly associated with a higher dynamic
range than RNA analytes.65

Publication Bias
Because there are relatively fewer publications with small co-
hort sizes for the newer modalities compared with those for
PD-L1 IHC, a funnel plot was used to assess potential publica-
tion bias. Bias appeared to be trivial, with no effect on major
findings (data available from the authors).66

Discussion
Pretreatment predictive biomarkers for immuno-oncology
are sought after to help match individual patients to the
treatment regimen most likely to be of benefit. Predictive
biomarkers may also accelerate clinical trials and FDA
approvals, aid in cost containment, and help members of the
medical community provide accurate patient guidance. Cur-
rently, a number of different biomarker modalities are being
pursued. The most common tissue-based biomarker

Figure 2. Summary Receiver Operating Characteristic Curve Analysis by Assay Modality for Responders
vs Nonresponders
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A, Fifty-six analyses from the primary
literature correlating different
biomarker modalities with patient
responses after anti–PD-1/PD-L1
therapy were analyzed. The
sensitivity and 1−specificity of the
assay for each individual publication
is shown by a single dot (number on
the dot correlates with reference list
in eTable 1 in the Supplement). The
size of each dot is proportionate to
the size of the studied cohort. Linear
regression models weighted (B) by
the number of patients in each study
and unweighted (C) (ie, each study
treated equally) were used to
generate summary receiver operating
characteristic [sROC] curves for each
assay modality). The multiplex
immunohistochemistry/
immunofluorescence (mIHC/IF)
has a significantly higher area
under the curve (AUC) than PD-L1
(programmed cell death ligand 1) IHC,
tumor mutational burden (TMB), and
gene expression profiling (GEP) by
weighted approach and PD-L1 IHC
and TMB by unweighted approach.
a Indicates statistical significance

(P < .05), Hanley and McNeil
method.
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approaches for predicting response to anti–PD-1/PD-L1
therapy include PD-L1 IHC, TMB, GEP, and mIHC/IF. This
meta-analysis provides an overview of the relative diagnos-
tic accuracy of these approaches. We found that mIHC/IF has
a significantly higher AUC than PD-L1 IHC, GEP, and TMB
and has improved LR+ and LR− compared with the other
biomarker approaches. PD-L1 IHC, the most well-established
biomarker for response to anti–PD-1/PD-L1 therapy, has one
of the lowest AUCs and has generally poor LRs.

The AUC serves as a global measure of how well an assay
can distinguish between 2 groups—in this instance—responders
and nonresponders to anti–PD-1/PD-L1 therapy. Consensus
guidelines regarding acceptable AUCs for companion and com-
plimentary diagnostic tests do not exist. However, some authors
have suggested that diagnostic tests used for patient selection
should have AUCs of 0.80 or higher.67-69 In this study, we dem-
onstrate that mIHC/IF has an AUC in this range and that combin-
ing different biomarker modalities approaches can also result
in an AUC that approaches this target threshold.

It is possible that 2 biomarker approaches could demon-
strate near equivalent AUCs, yet have differing sensitivities and
specificities. Additional measures of diagnostic accuracy are
useful for further assessing how modalities perform at ruling
in vs ruling out a patient for a given therapy. Most approaches
had a similar ability to identify patients who were not likely
to respond to therapy, as indicated by comparable NPVs and
LRs−. The notable difference was in identifying patients most
likely to respond to therapy. In this regard, mIHC/IF had a sig-
nificantly higher PPV and LR+. This means that there are fewer

false-positive tests, that is, patients who would be treated but
would not respond to therapy. This translates practically to
being able to match a patient to a potentially more effective
treatment sooner as well as not exposing a patient to poten-
tial immune-related adverse effects if they are less likely to re-
spond. Furthermore, because an average treatment course typi-
cally costs more than $120 000, using biomarker strategies with
improved diagnostic accuracy may help avoid considerable
costs to the health care system for much less likely antici-
pated benefit.

Figure 3. Summary Receiver Operating Characteristic (sROC)
Curve Analysis
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The Figure shows that multimodality biomarkers have an sROC curve
comparable to that of multiplex immunohistochemistry/immunofluorescence.
AUC indicates area under the curve; GEP, gene expression profiling;
IHC, immunohistochemistry; mIHC/IF, multiplex immunohistochemistry/
immunofluorescence; PD-L1, programmed cell death ligand 1;
TMB, tumor mutational burden.

Figure 4. Predictive Values for Each Individual Study and Pooled
Likelihood Ratios by Biomarker Assay Modality
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treatment. Dots in the upper right quadrant represent studies that reported
both high negative and positive predictive values, meaning they are suitable for
excluding patients who should not be treated and for selecting patients who will
respond. Multiplex immunohistochemistry/immunofluorescence (mIHC/IF) can
help both rule in and rule out response to anti–PD-1/PD-L1 therapy. The study
number correlating to the individual dots is provided in eFigure 7 in the
Supplement. B, Multiplex immunohistochemistry/IF has a better likelihood ratio
(LR−) than other tested biomarker approaches, whereas both mIHC/IF and
multimodality approaches have significantly higher LRs(+) (eTable 3 in the
Supplement).
a Statistically significant.
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The improved performance of mIHC/IF cannot simply be
attributed to a larger number of analytes studied because the
GEP methods assayed a median of 17 analytes vs 2 or 3 for
mIHC/IF. Instead, these findings suggest improved diagnos-
tic benefit when spatial relationships and protein coexpres-
sion on specific cellular subsets are assessed. The studies of
mIHC/IF assays included herein evaluated parameters such as
PD-1 to PD-L1 proximity (n = 2 studies15,16), CD8+ cell density
within a specific TME compartment (eg, intratumoral/
peritumoral defined by IHC/IF tumor marker, n = 39,60,61), or
coexpressed markers indicating T-cell activation (n = 217,25).
Spatial and coexpression assessments are not represented in
GEP assays where specimens were homogenized before being
assayed. There are emerging high multiplex protein detec-
tion approaches, including multispectral platforms,15,70,71 se-
rial stain and strip,72,73 imaging mass cytometry,74,75 and mul-
tiplexed ion beam imaging.76,77 Although it is anticipated that
the inclusion of additional markers will yield improved PV, large
data sets for such comparisons are not yet available.

Many of the modalities test for parameters representing
an “inflamed” TME. The aforementioned mIHC/IF assays char-
acterize T-cell activation states, immune checkpoint expres-
sion, and/or the density of specific T-cell subsets. Many GEP
studies contain an IFN gamma gene signature, and PD-L1 IHC
expression may be driven by IFN gamma following T-cell
infiltration.8,78 In contrast, TMB does not necessarily corre-
late with an “inflamed” TME62,79 but represents the possibil-
ity of there being immunogenic mutation-associated neoan-
tigens present within the tumor. An analysis performed by
Danilova et al62 on melanoma specimens from The Cancer
Genome Atlas data set showed that TMB and an inflamed
phenotype were distinct variables when predicting patient sur-
vival and that TMB specifically had added prognostic value
when tumors were less inflamed. The concept that TMB and
a marker of an inflamed TME have potential additive value is
supported in the present study by the fact that combined bio-
marker approaches such as PD-L1 IHC + TMB demonstrated a
higher AUC and LR+ compared with that of PD-L1 IHC, TMB,
or GEP alone. Importantly, the combination of mIHC/IF + TMB
has yet to be tested to determine whether the incorporation
of TMB can further elevate the mIHC/IF AUC.

Limitations
The limitations of this study include the fact that there were
different assays represented within a single-assay type cat-
egory. For example, the studies of PD-L1 IHC included herein
used different companion diagnostic assays with different
PD-L1 antibodies, thresholds of positivity, and scoring sys-
tems. Similarly, the mIHC/IF assays tested different protein
targets using different platforms as described earlier, and the
number of detected mRNA targets ranged from 1 (IFN gamma)
to 26 different gene sets representing about 690 individual
genes. In contrast, TMB arguably represents a more uniform
output. Furthermore, the patient outcome tested in this study
was ORR. Although it is recognized that ORR correlates with
survival,80 it would be of great interest to specifically test for
an association between these assay modalities and PFS and/or
OS; however, such long-term follow-up is not yet available for
most studies. Finally, it is a significant limitation that mIHC/IF
is the newest method of those tested. Even though the analy-
sis was weighted by specimen numbers, the mIHC/IF test num-
bers used in the study were less than 10% of PD-L1 test num-
bers, thus warranting caution in the interpretation of this
modality. However, given the early promise of mIHC/IF, we look
forward to broader future testing.

Conclusions
The increasing number of published studies reporting on pre-
dictive biomarkers for response to anti–PD-1/PD-L1 therapy has
provided an opportunity to assess the accuracy of individual
assay modalities. This meta-analysis suggests that mIHC/IF
merits further investigation. The relative success of mIHC/IF
in predicting patient response also provides insight into the
spatial importance of tumor-immune interactions and the con-
tribution of protein marker coexpression. Importantly, this dif-
ference was achieved with a relatively “low plex,” that is, an
average of 2 to 3 markers examined. Future improvements in
diagnostic accuracy are likely to be made by increasing the
number of markers detected in the mIHC/IF format and by de-
veloping multiplex, multimodal approaches that potentially
combine GEP and/or TMB with mIHC/IF.
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