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High-dimensional single-cell (HDcyto) technologies, such as mass cytometry (CyTOF) and
flow cytometry, are the key techniques that hold a great promise for deciphering com-
plex biological processes. During the last decade, we witnessed an exponential increase
of novel HDcyto technologies that are able to deliver an in-depth profiling in different
settings, such as various autoimmune diseases and cancer. The concurrent advance of
custom data-mining algorithms has provided a rich substrate for the development of
novel tools in translational medicine research. HDcyto technologies have been success-
fully used to investigate cellular cues driving pathophysiological conditions, and to iden-
tify disease-specific signatures that may serve as diagnostic biomarkers or therapeutic
targets. These technologies now also offer the possibility to describe a complete cellu-
lar environment, providing unanticipated insights into human biology. In this review,
we present an update on the current cutting-edge HDcyto technologies and their appli-
cations, which are going to be fundamental in providing further insights into human
immunology and pathophysiology of various diseases. Importantly, we further provide
an overview of the main algorithms currently available for data mining, together with
the conceptual workflow for high-dimensional cytometric data handling and analysis.
Overall, this review aims to be a handy overview for immunologists on how to design,
develop and read HDcyto data.
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In recent years, we witnessed an exponential growth in high-
dimensional (HD) technologies, which resulted in a wide range of
medical [1–11] and biological [12–14] applications. HD cytome-
ters such as mass cytometry (Cytometry by time of flight, CyTOF)
and flow cytometry (hereafter termed HDcyto) can detect more
than 40 parameters (with the promise for detection of up to
100 parameters) with single-cell resolution. The data produced
by HDcyto techniques together with appropriate computational
methods of analysis have initiated a new era for translational
medicine, enabling the unsupervised discovery of new cell pop-
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ulations, disease signatures as well as biomarkers of response to
therapeutics in several pathologies, such as autoimmune diseases
and cancer.

Single-cell RNA sequencing (scRNAseq) also provides a high-
throughput platform for deep cell profiling, as reviewed else-
where [15]. The number of transcripts detected, and the single-
cell resolution are, however, burdened, today by high costs that
strongly reduces the number of cells that can be analyzed (usually
in the order of 102–103). In addition to this, pre-enrichment of
cells samples is often required, therefore preventing the analysis
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of other potentially important cell subsets that might be present in
the original sample. The analysis of cross-sectional cohorts of clin-
ical samples is often exceedingly demanding, in terms of cost and
time needed to acquire the samples. Conversely, well-designed
HDcyto panels allow the measurement of fewer but more charac-
terizing antigens on higher amounts of cell and most importantly,
larger cohorts.

Compared to conventional “omics” approaches, such as bulk
transcriptomics and proteomics, where high throughput perfor-
mances are often hampered by a disadvantageous signal-to-noise
ratio and lack of resolution at the cellular level [16], HDcyto tech-
nologies provide an opportunity to better describe the complex
cellular population dynamics that regulate biological phenomena.
The generation of scientific data from the integrated analysis of
biological samples from different cohorts allows a detailed analysis
of the different markers measured by HDcyto. The data obtained
can then be integrated with clinical metadata such as age, sex,
disease-scores, routine serology screens, and therapy plans, thus
providing a valuable contribution for bridging cutting-edge tech-
nologies to tailored medicine [8, 17, 18].

New technologies in high-dimensional
cytometry

In 1965, Fulwyler reported the discovery of an electronic device
capable of separating erythrocytes from leukocytes based on their
respective cell volume via their optical properties [19]. Since
then, our ability to interrogate cellular heterogeneity through the
means of tagged antibodies has dramatically expanded our under-
standing of biological processes, and revolutionized immunol-
ogy research. To fulfill the demands for a higher dimensionality,
conventional cytometer technologies have been implemented by
expanding the range of emission and detection of wave light (e.g.
PMT based FACS; Spectral Analyzer), the inclusion of means for
cell morphology detection (e.g. Imaging flow cytometry, cyclic
immunofluorescence), and novel strategies that combine features
of flow-cytometry and mass-spectrometry (e.g. mass cytometry;
Imaging mass cytometry) (Table 1).

Photomultiplier tube (PMT)-based flow cytometers

New generation photomultiplier tubes (PMTs)-based flow cytome-
ters have currently integrated excitation lasers for newly designed
fluorophores, therefore covering thus far untapped absorption
spectra [20]. Moreover, up to 30 parameters can be detected
with single cell resolution [21]. The complex spectra that derives
from relatively broad emission of dyes requires, however, an ade-
quate expertise in panel design as well as labor-intensive signal
compensation of spectral overlap (Brummelmann et al, in revi-
sion). Conversely, spectral analyzer cytometers utilize an elegant
approach to circumvent these hurdles by dispersing the entire
emitted fluorescence signal according to the respective wave-
length using either prisms or gratings, granting a higher pho-
ton throughput, and a better resolution respectively [22]. Con-

sequently, the entire fluorescence spectrum is captured by a lin-
ear array of charge-coupled device or PMT detectors, and spec-
tral unmixing algorithms deconvolute the signal [22]. Without
the need for further compensation, algorithms are able to dis-
criminate antibody-mediated fluorescence signals from autoflu-
orescence, making spectral cytometry especially suitable for cell
suspensions derived from tissues like heart, brain or intestines that
have to deal with high autofluorescence [23].

Imaging cytometry

Other technologies aimed to implement dimensionality by record-
ing expression data in even subcellular resolution and morpho-
logical features. For instance, imaging flow cytometry allows the
simultaneous imaging in the bright field, dark field, and up to ten
fluorescence channels, thereby offering morphological and spa-
tial information of each individual cell [24]. This principle makes
imaging flow cytometry a rewarding approach for diagnostic set-
tings that hold cellular morphological changes, and might be used
for the clinical diagnosis of hematological malignancies [25]. On
the other hand, slide-based cytometry (Chip cytometry or Cyclic
immunofluorescence) immobilizes histologic sections or cell sus-
pension on a chip instead of passing them through a flow. The
iterative loops of staining-acquisition-bleaching of the employed
fluorophores enable a theoretically unlimited number of markers
that can be detected [26]. The applicability of highly multiplexed
assays, the possibility to store cryopreserved samples for up to
20 months, and the opportunity to re-stain for subsequent anal-
ysis has advantages in clinical settings when invasive procedure
are needed to collect samples and material is limited (e.g. analy-
sis of cerebrospinal fluid, or tissue biopsies) [27]. The caveats of
such technologies include: (i) problems to detect antigens requir-
ing incompatible antigen retrieval strategies, (ii) decreasing anti-
gen stability after multiple bleaching rounds, and (iii) the time-
consuming acquisition process.

CyTOF

Fusing the fundamental principles of mass spectrometry and flow
cells led to the mass cytometry platform, also termed cytometry
by time-of-flight (CyTOF). Antibodies labeled with stable metal
isotopes prevents spectral overlap issues (albeit some level of
compensation might be still required [28]). Limitations in labeling
chemistry restrict today the amount of parameters measured
per cell to up to 50 to date [29, 30], which is still sufficient to
apply barcoding strategies (crucial in mass cytometry for the
exclusion of doublets and reducing inter-experimental variability)
while preserving high-sensitivity detection channels [31–33].
Importantly, once combined, all samples are stained and acquired
simultaneously, virtually eliminating technical sample to sample
variations and batch effects. These characteristics are particularly
suitable for automated high-dimensional analysis of large sample
groups, in which even rare immune subsets can be identified [32].
Further development of this platform aimed to embed the
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Table 1. Overview of described technologies methods and their coverage of the typical cytometry data analysis workflow

Feature Flow
cytometry

Spectral
analyzers

Imaging flow
cytometry

Cyclic immuno
fluorescence

Mass cytometry Imaging mass
cytometry

Theoretical
number of
detectable
parameters

50 64 10 Unlimited 135 135

Actual number
of parameters

30 [21] 32 [64] 10 [65] 60 [66] 50 [30] 32 [67]

Morphological
information

Detection of
cell size and
granularity

Detection of cell
size and
granularity

Includes
subcellular
information

Includes
subcellular
information

None Includes
subcellular
information

Acquisition
speed

10 000
cells/second

10 000
cells/second

5000 cells/second Time intensive
iterative
approach

500 cells/second 14h/mm2

Need for
compensation

Yes Spectral
unmixing
algorithms

Pixel by pixel
compensation

No Ongoing
debate [28]

Ongoing
debate [28]

Key advantages Fast,
reproducible,
established

No autofluores-
cence and
spillover

Valuable
morphological
and subcellular
information

Highly
multiplexed,
sensitive,
long-term
storage of
samples

High-
dimensionality,
barcoding
excludes
technical
variations

High-dimensional
informative of
tissue samples

Key drawbacks Spectral
overlap,
cumbersome
panel design

Not compatible
with every
fluorophores,
Difficult panel
design

Low
dimensionality,
difficult
compensation

Low throughput,
time-intensive
staining

Low acquisition
speed,
destructive
approach

Challenging
analysis, low
acquisition
speed

Best suited
application

Routine
assays,
clinical
diagnostics

Highly
autofluorescent
tissue [23]

Detection of
hematological
malignancies
[25]

Precious clinical
samples with
low cell
numbers [27]

Unbiased
biomarker and
disease
signature
discovery [7]

Interrogate
spatial
intercellular
interactions in
cancer tissue [4]

dimensionality of CyTOF with spatial resolution of imaging
technologies. By staining, laser ablation and acquisition of tissue
section, imaging mass cytometry currently allows the detection
of more than 30 specificities [4, 34].

Unambiguously, more than 50 years of continuous develop-
ment since the first flow cytometer led to a versatile platform for
the detailed investigation of cellular phenotypes. The responsibil-
ity of modern cytometry is to define computational workflows that
allow the translation of high-dimensional phenotypic single-cell
profiles into clinically meaningful outcomes. In the following
sections we will outline some of the most successful study designs
and how basic research and clinical medicine can benefit from
the embracement of data science and cutting-edge cytometry
technologies.

Identification of molecular signatures and
disease-associated phenotypes

One of the most prominent application of HDcyto technology
is the investigation of human pathologies, as it allows a deep

understanding of inter-cellular perturbations and the identifica-
tion of disease-specific signatures that may serve as diagnostic
biomarkers or, eventually, therapeutic targets. HDcyto has already
proved to be a powerful platform for the investigation of idio-
pathic syndromes and pathologies with incomplete understanding
of disease-driving mechanisms [7, 35–39].

Mass cytometric immune profiling of autoimmune diseases
revealed pathophysiological modes of action which provide the
rationale for new therapeutic strategies, otherwise overlooked
[35, 36, 40]. A combination of mass cytometry and machine learn-
ing detected a pro-inflammatory monocyte signature in pediatric
and adult systemic lupus erythematosus (SLE) patients which was
reverted upon blockade of interferon (IFN)/JAK pathway in an
in-vitro setting [35, 40]. Likewise, an enhanced responsiveness
to IFN-γ has been identified in T-helper and classical monocytes
of polyarticular juvenile idiopathic arthritis [17], encouraging the
use of Jak inhibitors for the treatment of autoimmune disease
entities with an increased IFN signature.

Another application of HDcyto is the identification of blood
biomarkers for disease severity. Primary Sjögren’s syndrome
is a prototype of chronic autoimmune pathology with organ
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inflammation and systemic disease. Mass cytometry analysis of
blood and glandular tissue was instrumental to the identification
of a 6-cell disease signature present in blood which correlated to
inflammatory activity in the tissue, therefore offering a potential
diagnostic alternative to invasive biopsies [37]. Similarly, HDcyto
showed alterations in distinct clusters of mucosal-associated
T cells, NK cells and B cells in peripheral blood associated with
chronic graft-versus-host-disease (cGVHD) severity [38]. Impor-
tantly, these exploratory results were then also confirmed by
low-dimensional flow cytometry, indicating that similar findings
not only are reproducible, but that they might be employed on
a larger scale for clinical diagnostic purposes. Further studies in
this direction hold significant promise to find biomarkers that
facilitate diagnosis, help in therapeutic decisions and reduce the
need for invasive procedures in diagnosis consolidation [41]. Not
only blood, but also tissue samples or other liquid biopsies (e.g.
bronchoalveolar lavage) have been subjected to multiparameter
profiling by mass cytometry and automated data analysis.
Distinct monocyte/macrophage and granulocyte cell populations
distinguished asthmatic patients from cystic fibrosis patients and
healthy controls. The method proved to be especially useful for
dissecting a heterogeneous condition like asthma into groups
with different immunological characteristics which, might reflect
differences in disease pathophysiologies and could help to make
individualized therapeutic decisions in the future [39].

Finally, unbiased algorithm-guided analysis of HDcyto data
has revealed unanticipated immune signatures of diseases with
incomplete understanding of pathophysiological mechanisms.
Narcolepsy, a rare neurological sleep disorder, has been consid-
ered an autoimmune disease due to its high HLA-association, but
compelling evidence had been lacking until Hartmann et al dis-
covered a disease-associated T cell activation and cytokine sig-
nature in blood [42]. The disturbances in the immune system of
narcolepsy patients have later been found to –at least in part–
be based on the antigenic history of patients T cells [43]. Based
on these benchmarking results further studies can delineate the
contribution of identified cell phenotypes or functional states to
disease and evaluate their potential as therapeutical targets.

Monitoring biomarkers for individualized
patient stratification and response to
treatment

More recently, the use of HDcyto, together with computational
tools, highlighted the translational relevance of HD techniques
in the precise identification of biomarkers of response to ther-
apy [5, 8, 11, 38]. A recent study showed how HDcyto can
predict the response to anti-PD1 (a monoclonal antibody that
targets an inhibitory receptors on activated/exhausted T cells)
treatment in different cohorts of patients with melanoma, with
crucial implications in terms of patient stratification and preci-
sion medicine [8]. HD analysis strategy [8, 44] allowed correlat-
ing the CD14+ CD16-HLA-DRhi population (classically associated
with peripheral blood monocytes), with the clinical response to

the treatment to anti-PD1 in patients with metastatic melanoma.
Through the systematic bioinformatic analysis and the exhaustive
characterization of the peripheral blood cell populations of treated
patients, they observed that a higher frequency of classical mono-
cytes in the blood correlates with a greater disease-free survival
and better overall survival, proposing these cells as a new predic-
tive biomarker of response to treatment of metastatic melanoma. It
is interesting to note that the immunological mechanisms underly-
ing this correlation have not been elucidated, thus demonstrating
that this type of analysis can generate new hints to study multiple
unsolved biological processes, previously unimaginable.

In a different study, Bengsch et al. performed an elegant
epigenetic-guided mass cytometry approach to define core T cell
exhaustion-specific genes and clusters with expression patterns
[45]. Combinatorial co-expression of phenotypic and transcrip-
tion factors identified nine distinct CD8 exhausted T cell clusters,
which were differently represented in healthy controls, cancer
and HIV patients. These results hinted for a role in HD profiling of
CD8+ T cell exhaustion to monitor disease progression or response
to therapy. A similar study by Brummelman et al. [18] shows how
HD single cell analysis of CD8+ T cells from patients with lung
cancer were enriched in tumors compared with cancer-free tissues
and blood. HD analysis strategy permitted to find variations in the
frequency of CD8+ T cells CD69+ CXCR5+ (with characteristics of
stem-like cytotoxic CD8+ T cells) prevalent within early (Stage I)
versus late stage (StageII-IVA) disease in samples of patients with
lung carcinoma; therefore, that the abundance of CXCR5+ CD8+

T cells in the tumor negatively correlates with disease progression.
In synthesis, HDcyto has a strong potential for immunomon-

itoring and identificationof novel biomarkers, such as new cell
populations, which are of relevance for individualized response to
treatment and the stratification of patients.

Characterization of tissue-specific atlas for
the investigation of local pathology

The unique features of HDcyto do not only apply to the inves-
tigation of liquid biopsies in pathological conditions, but also
to the depiction of cellular heterogeneity per se, revealing new
details on developmental paths and functions of immune popula-
tions [12, 46, 47].

Using mass cytometry, Wong et al., performed a thorough char-
acterization of lymphocytes across eight non-lymphoid and lym-
phoid human tissues [48]. By analyzing the functional and traffick-
ing markers together with cytokines expression profile, the authors
found tissue- and cell type-specific signatures of distinct resident
T cell subpopulations (TRM). Similarly, using multiparameter flow
cytometric approach, Thome et al., described differential features
of T cells in pediatric versus adult human blood, lymphoid and
mucosal tissues [49]. Specifically, they reported differences in fre-
quency and activation status of T cell subpopulations (including
TRM cells) demonstrating an early differentiation and regulation
in T-cell compartment.
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Figure 1. Overview of HDcyto experimental design with clinical samples. (A) Example of questions that can be addressed by HDcyto. Both factors,
(B) the sample characteristics, and (C) the most suitable HDcyto technology will help selecting the algorithm to choose lX, (D) Schematic design of
integrated data analysis . QC = data quality control.

The classification of innate lymphoid subsets (ILCs) and den-
dritic cells (DCs) in human would have not been possible without
HD technologies, due to their complex and largely overlapping
phenotypical characteristics. The simultaneous measurement of
phenotypic molecules, cytokines and transcription factors across
mucosal and non-mucosal tissues in healthy and diseased indi-
viduals identified distinct subsets of ILC2, ILC3 subsets and intra-
epithelial (ie)ILC1-like cells. Interestingly, HD profile of (ie)ILC1-
like cells and NK cells shared expression of few surface antigens
and cytokines, suggesting NK cells plasticity under influence of
tissue environment [50]. Conversely, HDcyto expanded the tax-
onomy of DCs in different tissues, highlighting a heterogeneity
within plasmacytoid and conventional DCs which include both
precursors as well as mature DC [13, 51].

HDcyto expanded also our knowledge of human immunology
and provided a unique resource to study the role of leukocytes
in pathological conditions; for instance, the characterization of
tumor microenvironment (TME). One of the first immune land-
scapes of tumors were described in clear cell renal cell carci-
noma (ccRCC) and lung adenocarcinoma [2, 52]. In both studies
researchers analyzed the TME of lesions and normal tissue using
mass cytometry, IHC/IF techniques and single cell RNA sequenc-
ing data. The authors identified different T cell subpopulations
in ccRCC and lung adenocarcinoma lesions through automated
data analysis [2, 52]. Each T cell subpopulation was characterized
by the expression of immunomodulatory receptors (PD-1, 4-1BB,
ICOS, CTLA-4, TIM-3, LAG-3 and others) and activation markers
(CD38, HLA-DR). Chevrier et al., associated for the first time CD38
expression with cells exhaustion [2]. Lavin et al., further analyzed
the functional status and cytokine production in T cells [52]. They
showed that lung adenocarcinoma lesions had lower expression
of granzyme B and IFN-γ among cytolytic CD8+ T cells and NK
cells, and a significant expansion of regulatory T cells (Tregs) com-
pared to healthy lung tissue. Another indicative population of lung
adenocarcinoma TME were NK cells, which showed reduction in
frequency and cytolytic activity (low expression of granzyme B,
IFN-γ and CD57).

Besides the characterization of lymphocytes, Chevrier et al.,
focused on describing the myeloid compartment of TME. Authors
identified 17 subtypes of tumor-associated macrophages in ccRCC
lesions and displayed clusters on the diffusion map to empha-
size transition conditions in developmental paths. Additionally,
distinguished macrophage populations were associated with clin-
ical outcome of ccRCC [2]. The role of myeloid cells in lung
adenocarcinoma TME is crucial as well, as it was shown that
PPARγhi macrophages and DCs were associated with pathology
[52]. There are several studies that implemented HDcyto and
made it “the technique of choice” in the investigation of clinical
samples [53–55].

New algorithms for high-dimensional data
mining

In the previous sections we provided an overview over tech-
nological advancement in HDcyto and the different fields of
development in human research. The increased usage and success
of high throughput technologies would not have been possible
without the concurrent advance of bioinformatic platforms that
provide computational tools required for the deconvolution and
interpretation of an otherwise intelligible set of results. Currently,
we can identify a threefold effort in the development of innovative
algorithms for data visualization, classification of cell population
based on similarity, and the unbiased identification of stratifying
signatures (Fig. 1).

Most of the currently available tools for data visualization
rely on dimensionality reduction, which is similar to a princi-
ple component analysis. One popular way to visualize HDcyto
data is obtained by t-distributed stochastic neighbor embedding
(t-SNE) [56, 57], which is now implemented in different plat-
forms (e.g. R, MatLab, Pyton). This algorithm applies a non-linear
reduction that accounts for pair-wise similarity among all cells.
This allows capture of the overall measurement-informativity and
project it in a 2/3-dimensional plot. Albeit implementations of
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Figure 2. Overview of different clinical questions addressed using HDcyto approaches. (A) O’Gorman et al. [40] used supervised machine learning
to identify a pro-inflammatory monocyte signature characteristic of SLE patients (B) Krieg et al. [8] made use of a systematic immune profiling
to identify a subset of CD14highHLA-DRhigh monocyte that allows the stratification of melanoma patient upon checkpoint-inhibitor therapy (C)
Chevrier et al. [2] found an association between a specific immune asset and the disease survival in patients with clear cell renal cell carcinoma by
the HDcyto investigation of tumor infiltrating cells.

the algorithm allows now multi-core processing (R package multi-
core.R.tsne), t-SNE are still amenable of long computational time,
which often requires even important subsampling of the entire
dataset. Implemented in Python, the uniform manifold approxi-
mation and projection (UMAP) algorithm offers a valuable alter-
native to t-SNE, given the reduced computational time, similar
embedding properties and the possibility of including additional
data on existing paths [58].

Data visualization is not devoid of complex parameterization,
which can be visually misleading if a rigorous approach is not
used. For this reason, unsupervised representation learning algo-
rithms, such as FlowSOM and X-shift, provide a better alternative
for the unbiased classification of cell-clusters. Numbers of differ-
ent algorithms have been developed to capture the heterogeneity
of different cell populations, and reviewed elsewhere [59]. More
recently, the power of neural network and self-organizing maps
(SOM) were exploited to develop FlowSOM [60]. All analyzed
cells are iteratively assigned to 100 nodes of the SOM, which
are then arranged in a minimal-spanning tree. While a hierarchi-
cal metaclustering function is already implemented, cluster stabil-
ity and possible overfitting should be further assessed using con-
sensus matrices and the elbow point of k over cluster numbers.
Another powerful tool, X-shift, has been developed to combine an

innovative clustering algorithm together with cutting-edge visu-
alization resources [61]. This stand-alone application is based on
t-weighted k-nearest-neighbor (kNN) density estimation to define
clustering-centroids, which can then be visualized through the
graphical interface via nested divisive marker trees as well as
force-directed layouts.

Newly developed supervised machine learning offers now
the opportunity to directly interrogate large datasets for strat-
ifying features based on classifiers. Several algorithms are
now available for this purpose, with more and more devel-
opment and features. Cluster identification, characterization,
and regression (CITRUS) [62] is now also implemented in
different platforms such as Cytobank. While graphical user
interfaces are very handy, they are amenable of lack of flexibility
(e.g. data preprocessing is hampered, lack of control over
preclustering). Recently, CellCNN has overcome this limitation
by building associative filters on-the-fly without preclustering
steps, therefore identifying even rarer subsets of stratifying cells
[63].

Overall, data visualization and clustering algorithms represent
potent tools to explore HDcyto data, while cutting-edge supervised
machine learning will provide a further automatization for the
investigation of large datasets.
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Concluding remarks

After years of technology and analytical tool development, we
have finally reached the verge of the breakthrough of HDcyto in
precision medicine (Fig. 2). By conveying interdisciplinary exper-
tise in bioinformatics, biology and clinical medicine, HDcyto tech-
nological platform is now delivering new unanticipated insights on
a broader spectrum of physiological and pathological conditions.
However, an efficient and broader application of HDcyto is still
hampered by limitations which cannot be overlooked. The identi-
fication of relevant questions with appropriate controls, a rigorous
scientific methodology delivering high quality data and the deep
understanding of the programming behind automated algorithms
assume now a tremendous importance, given the complexity of
datasets. For this reason, we think that it is utterly important to
provide an appropriate multidisciplinary training to a new gener-
ation of researchers, whose role will require them to disentangle
convoluted results into intuitive conclusions.

Overall, HDcyto has finally fulfilled the theoretical gap between
technological development and clinically relevant findings. With
the consolidation of HDcyto platforms and the implementation
of analytical algorithms, we expect that in the near future we will
observe a strong increase in translational studies that will increase
our understanding of human biology and pathophysiology.
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