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The single-cell pathology landscape of 
breast cancer

Hartland W. Jackson1,2,10, Jana R. Fischer1,2,3,10, Vito R. T. Zanotelli1,2,3, H. Raza Ali1,2,4,  
Robert Mechera5, Savas D. Soysal6,7, Holger Moch8, Simone Muenst9, Zsuzsanna Varga8, 
Walter P. Weber5 & Bernd Bodenmiller1,2*

Single-cell analyses have revealed extensive heterogeneity between and within human 
tumours1–4, but complex single-cell phenotypes and their spatial context are not at 
present reflected in the histological stratification that is the foundation of many 
clinical decisions. Here we use imaging mass cytometry5 to simultaneously quantify 
35 biomarkers, resulting in 720 high-dimensional pathology images of tumour tissue 
from 352 patients with breast cancer, with long-term survival data available for 281 
patients. Spatially resolved, single-cell analysis identified the phenotypes of tumour 
and stromal single cells, their organization and their heterogeneity, and enabled the 
cellular architecture of breast cancer tissue to be characterized on the basis of cellular 
composition and tissue organization. Our analysis reveals multicellular features of the 
tumour microenvironment and novel subgroups of breast cancer that are associated 
with distinct clinical outcomes. Thus, spatially resolved, single-cell analysis can 
characterize intratumour phenotypic heterogeneity in a disease-relevant manner, 
with the potential to inform patient-specific diagnosis.

Histological and phenotypical differences between tumours guide 
cancer diagnosis, prognosis and the selection of treatment. At present, 
breast cancers are graded on the basis of tumour structure and cellular 
morphology, and subcategorized when more than 1% of tumour cells 
contain hormone receptors or more than 10% express high levels of 
HER2 protein or exhibit amplification of the HER2 gene6–8. This leaves a 
large portion of cells uncharacterized, despite the fact that additional 
molecular subclasses and morphological features have previously been 
identified as prognostic9–12. It is clear that clonal evolution and spatially 
distinct tumour microenvironments drive inter- and intrapatient cel-
lular heterogeneity and hinder effective treatment2–4,13,14. Using highly 
multiplexed imaging5,15,16, multiple complex cellular phenotypes have 
been identified within the context of the tumour microenvironment, 
and this has enabled refined histopathological classification of clinical 
tissue samples17–20. Here, using a topological single-cell network analysis 
of high-dimensional mass cytometry images, we quantified spatial 
inter- and intratumour heterogeneity on a single-cell level and identi-
fied spatially resolved features and novel subtypes of breast cancer 
that are associated with clinical outcome.

Spatially resolved single-cell phenotypes
To comprehensively quantify the cellular heterogeneity and spatial 
organization of breast cancer tissue, we designed an imaging mass 
cytometry (IMC) panel specific to breast histology (Extended Data Fig. 1) 
and used this to image samples from 281 tumours that represent all 
clinical subtypes and grades of pathology (Supplementary Table 1). IMC 

combines immunohistochemistry staining using metal isotope-labelled 
antibodies with laser ablation and mass-spectrometry-based detection 
to produce high-dimensional images5 (Fig. 1a). Our panel of 35 antibod-
ies simultaneously quantified the clinically established breast cancer 
targets oestrogen receptor (ER), progesterone receptor (PR) and HER2; 
the proliferation marker Ki-67; markers of epithelial, mesenchymal, 
immune and endothelial lineages; and targets that provide insight into 
signalling pathways, oncogenes and epigenetics (Extended Data Fig. 1, 
Supplementary Table 2). IMC generates images that are comparable to 
those produced by immunofluorescence or immunohistochemistry, 
but that have the capacity for highly multiplexed staining5,21 (Extended 
Data Figs. 2, 3). Images were segmented into single cells and tumour 
and stromal regions using a random forest pixel classifier (Ilastik) and 
CellProfiler17,20,22. We identified 855,668 cells in 381 images (289 tumour, 
87 healthy breast and 5 liver controls), and quantified the expression of 
both marker genes and the spatial features of each cell (Fig. 1a). Cluster-
ing with PhenoGraph23 identified cell phenotype clusters (hereafter 
referred to as phenotypes) of endothelial, T and B cell, macrophage and 
stromal cell populations, as well as 59 diverse tumour cell phenotypes. 
As was previously observed1, some tumour phenotypes were unique to 
individual patients (Fig. 1b, c, Extended Data Fig. 4a). To identify com-
mon cellular subtypes within this spectrum, we defined 14 tumour cell 
metaclusters by hierarchical clustering of the tumour single-cell phe-
notypes defined by PhenoGraph (Fig. 1c, Extended Data Fig. 5a).

Tumours from every clinical subtype contained populations of 
fibroblasts, endothelial and immune cells at similar densities, but were 
enriched in populations of tumour cells that showed variable expression 
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levels of cytokeratins, hormone receptors and HER2, reflective of clini-
cal subtype (Fig. 1c, Extended Data Fig. 6a). Across all patients, immune 
cells were excluded from the cohesive tumour mass—although immune 
cells and fibroblasts did occasionally infiltrate the tumour mass and 
rare HRlow/− cells (that is, cells with low or no expression of hormone 
receptors) lacking cytokeratins invaded past the tumour–stroma 
front in some samples (Fig. 1c, Extended Data Fig. 4). Tumour regions 
contained various luminal HR+ epithelial cell phenotypes that were 
identified by combinations of expression of ER, PR, GATA3, E-cadherin 
and multiple cytokeratins, but hormone receptors were also expressed 
without cytokeratins in a few cases (metacluster 26) (Fig. 1c, Extended 
Data Fig. 6b). Of the luminal cytokeratins (CK7, CK8/18 and CK19), 
only CK7 was associated with specific luminal subsets of tumour cells 
(metaclusters 19 and 20) (Fig. 1c). Expression of HER2 was not a defining 
feature of metaclusters but was observed at different levels in multi-
ple phenotypes. Phenotypes without hormone receptor and HER2 
receptor expression (characteristics of triple-negative breast cancer 
(TNBC)) included metaclusters with high levels of Ki-67, p53, EGFR 
and the hypoxia marker CAIX (metaclusters 15–17); basal cytokeratins 
(metacluster 18); and even luminal cytokeratins (PhenoGraph clusters 
within metaclusters 19 and 22) (Fig. 1c).

Multicellular breast cancer architecture
On the basis of these single-cell phenotypes, we sought to define pat-
terns of multicellular architecture in breast tumour tissue (Fig. 2a). 

We evaluated regional correlations between cellular metaclusters 
to determine whether cells co-occurred across all images, and used 
neighbourhood analysis based on permutation tests17 to quantify 
cell colocalization and identify statistically significant interaction 
or avoidance between pairs of cell phenotypes (Fig. 2b). Tumour cell 
phenotypes were almost never correlated: each individual tumour 
contained many homotypic interactions between similar cells and few 
heterotypic interactions between tumour cells (Fig. 2b, highlighted area 
1). Generally, heterotypic interactions were associated with regionally 
specific structures such as blood vessels (Fig. 2b, highlighted area 2) or 
with distinct epithelial areas (highlighted area 1) or stromal areas with 
a high density of cells, in which immune cells interacted (highlighted 
area 3). Directional interactions were also observed where supporting 
fibroblasts enclosed endothelial cells in large blood vessels and where 
stromal cells surrounded tumour cells at the tumour–stroma interface 
(Fig. 2b, highlighted areas 2 and 4). T cells and proliferating epithelial 
cells were observed in the vicinity of endothelial cells, and their pro-
portions were correlated across images (highlighted areas 5 and 6, 
respectively, in Fig. 2b); proliferating cells surrounded endothelial 
cells, not the reverse, representing their location outside vessels. The 
neighbourhood analysis revealed interaction signatures that distin-
guished well-separated or stromal-interactive tumour architectures, 
which were related to the tumour grade as scored by a pathologist17 
(Extended Data Fig. 7).

Tissue function is implemented by multicellular units that we refer 
to as communities, which consist of higher-order (rather than paired) 
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Fig. 1 | Single-cell phenotypes in high-dimensional histopathology of breast 
cancer. a, Schematic of IMC acquisition of multiplexed images from 281 
patients with breast cancer and the analyses of single-cell phenotypes, 
metaclusters, stromal-cell organization and architecture, tumour and patient 
subclassification and patient overall survival. b, Map using t-distributed 
stochastic neighbour embedding (t-SNE) of 171,288 subsampled single cells 
from high-dimensional images of breast tumours coloured by cell-type 

metacluster identifier. c, Heat map showing the z-scored mean marker 
expression or distance to tumour–stroma interface for each PhenoGraph 
cluster, coloured by metacluster identifier. The absolute cell counts of each 
PhenoGraph cluster are displayed as a bar plot (left). In the bubble plot, circle 
size shows the relative proportion of all cells in a clinical subtype that come 
from each cluster, and circle opacity shows the proportion of each cluster that 
is present in the different clinical subtypes.
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interactions between one or more cell phenotypes. We identified  
communities by first constructing a topological network of the inter-
actions between neighbouring cells and then applying a graph-based 
approach to detect communities using the Louvain algorithm24 (Fig. 2a). 
Applied only to tumour cells, community detection identified dense 
epithelial patches of different sizes, which we term tumour commu-
nities (TCs). When applied to all cells, microenvironment communi-
ties (MCs) that contain tumour and stromal cell components were 
identified (Fig. 2a). Using PhenoGraph, we grouped multicell com-
munities according to only their tumour cell phenotypes (TCs), or all 
cells agnostic to tumour cell phenotype (MCs). Tumour communi-
ties were mostly dominated by a single cellular metacluster and were 
separated on the basis of the absolute number of cells (Fig. 2c, d (for 
example, TCs 4, 7 and 18)) (Supplementary Figs. 1, 2). Some microen-
vironment communities consisted of fibroblasts that interacted with 
a variety of tumour cells (MCs 2, 5 and 8); others showed sparse stroma 
content (MCs 14, 17, 18 and 20–22) or were enriched for T cells (MCs 19, 
25 and 30), macrophages (MC 27), large networks of T and B cells (MC 
1) or endothelial cells (MCs 6, 7, 13, 25 and 30) (Fig. 2e, f). Communities 
that were enriched in fibroblasts had few interacting immune cells, in 
accordance with the known roles of fibroblasts as agents of tumour 
desmoplasia and immune exclusion25.

Single-cell pathology and risk
We next investigated how the organization of single cells into com-
munities contributes to the tissue architecture of breast cancer and its 
subtypes6. Cells from multiple cellular metaclusters were found in every 
clinically defined subtype of breast cancer (Extended Data Fig. 6a), 
which indicates that the general classification based on pathology does 
not fully elucidate inter- and intrapatient cellular heterogeneity1,9,11. 
We reasoned that examining the landscape of pathology at a single-
cell level would provide a higher-resolution classification of patients 
than that achieved using current clinical subtypes that are based on 
classic histology of single stains. Using unsupervised clustering, we 
grouped patient tumours on the basis of their tumour cell metacluster 
composition and identified 18 single-cell pathology (SCP) subgroups 
that split the classic clinical subtypes (Fig. 3a, Extended Data Fig. 8a, 
Supplementary Table 3). SCP subgroups had various proportions of 
the epithelial communities (Fig. 3b), and individual SCP subgroups 
had distinct clinical outcomes when compared to all other patients, 
to SCP subgroups of the same clinical classification and to other SCP 
subgroups that contain similar cellular metaclusters but different 
architectures (Fig. 4a–h, Supplementary Tables 4, 5).

Tumours that are clinically defined by their expression of hormone 
receptors (HR+ tumours) were divided into those that were strongly 
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Fig. 2 | A global map of the cellular neighbourhoods and interaction 
networks of breast cancer. a, Representative images depicting the different 
steps in the spatial analysis. Images show (left to right): pseudocoloured IMC; 
single-cell mask of the same field of view labelled by cellular metacluster 
identifier; the topological cell interaction network; modular regions of the 
tumour network identified as epithelial communities; and modular regions of 
the tumour–stroma network identified as microenvironment communities. 
Scale bars, 100 μm. b, Heat map in which squares indicate the Pearson 
correlation of cell phenotype proportions across all measured tissue regions 
(n = 367 images) and circles indicate significant pairwise cell-type interaction 
or avoidance summarized across the two-sided permutation tests on the 
individual images (n = 367 images, 1,000 permutations each). Circle colour 

indicates the percentage of images and size represents the number of images 
with a significant cell–cell interaction or avoidance (P < 0.01). Highlighted 
interactions (numbered boxes) include (1) tumour epithelium; (2) 
endothelium; (3) immune cells; (4) surrounding stroma; (5) endothelium and 
T cells; and (6) proliferating epithelium surrounding endothelial cells. 
Highlight colours that are not symmetrical indicate examples of directional 
interaction. c–f, Individually coloured epithelial communities (n = 8,495) (c, d) 
and microenvironment communities (n = 12,854) (e, f) clustered by 
PhenoGraph on the basis of the minimum to maximum normalized absolute 
number of cells from each cellular metacluster, and visualized on a t-SNE map 
(c, e) and in stacked bar plots (d, f) that indicate the average number of cells 
from each cellular metacluster; black represents tumour cell phenotypes.
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enriched in HRhi/+ cells (SCPs 1–5 and 12), and those with few HRhi/+ cells 
surrounded by many cells that expressed only low levels or lacked HRs 
(SCPs 6–10 and 11), which are currently not clinically classified (Fig. 3a, 
Extended Data Figs. 6, 8a, Supplementary Fig. 3). SCP 1, which pre-
dominantly contains metacluster 23 (CK+HRhi tumour cells), was only 
associated with patients who did not succumb to disease. Conversely, 
SCP 3—which contains the same cellular metaclusters but differs in 
structure, with smaller communities and relatively higher propor-
tions of CKlowHRlow cells of metaclusters 22 and 25—was associated with 
poor prognosis, as were SCPs 6 and 9, which involve predominantly 
CKlowHRlow cells (Figs. 3a, 4c, e, Extended Data Fig. 9). SCP 2 (containing 

CK+HR+ cells), was significantly enriched in the HR+HER2+ clinical  
subtype, which was otherwise dominated by the CKlowHRlow metacluster 
22 (Fig. 3a, Extended Data Figs. 6, 8a). SCPs 11 and 12 were character-
ized by CK7+ cells primarily from metaclusters 20 and 19, respectively. 
SCP 11 overlapped with the clinically assigned HR−HER2+ tumour type, 
and—although this clinical subtype usually has poor outcomes6,8—
patients with SCP 11 tumours had significantly better outcomes than 
other patients in this cohort (Fig. 4e). By contrast, the small number 
of patients with CK7+ tumours of the SCP 12 subgroup, which were 
predominantly clinically assigned as HR+HER2−, did not survive in 
the long term (Figs. 3a, 4a, c, e, Extended Data Figs. 6, 8a). Tumours  
from patients with high-risk TNBC contained distinct cell types  
including cells with a pattern of cytokeratin expression suggestive of a 
luminal rather than a myoepithelial cell of origin (Figs. 1c, 3a, Extended 
Data Figs. 6, 8a). TNBC phenotypes without luminal epithelial mark-
ers and with high levels of hypoxic, p53+EGFR+, basal or proliferative 
markers distinguished SCPs 13, 14, 15 and 17, which were all associated 
with poor outcome (Figs. 1c, 3a, 4f, Extended Data Figs. 6, 8a). SCP 16 
tumours were p53+ and expressed apoptotic markers, and, notably, 
patients with tumours of this subgroup did not succumb to disease 
even though they were clinically classified as having TNBC (Fig. 4f, 
Extended Data 8a).

By mapping the cellular spatial organization of these tumours, we 
observed variable structures and cellular densities, and relationships 
between cellular phenotype and tissue organization (Fig. 3a, b). Hetero-
geneous tumours consist of multiple phenotypically pure communities, 
as indicated by many bands on the heat map, whereas homogeneous 
tumours that are organized in one epithelial sheet or with similar com-
munities of different sizes have only a few clustered bands (Fig. 3b). 
Most tumours were dominated by a single tumour cell metacluster and 
few community types, but tumours in SCP 8 and some in SCP 10 were 
unusually heterogeneous—consisting of multiple epithelial cellular 
metaclusters at similar proportions that were localized to spatially 
distinct communities (Fig. 3b, Extended Data Fig. 6). Patients with 
these heterogeneous tumours of subgroup SCP 8 had very poor out-
comes (Fig. 4d). Overall, intratumour phenotypic heterogeneity was 
spatially segregated into separate tumour communities as opposed 
to heterogeneous tumour masses, and patients with tumours with 
spatiophenotypic heterogeneity had poorer outcomes.

Unlike tumour cell phenotypes, the stromal cell phenotypes that 
we identified were present in every clinical subtype at similar den-
sities (Figs. 1c, 3a, Extended Data Fig. 6). We therefore investigated 
whether the tumour–stromal microenvironment communities were 
more informative than stromal phenotype content alone. When we 
hierarchically clustered images according to the presence of multiple 
microenvironment communities, 11 groups (which we term stromal 
environments (SEs)), were revealed; some were enriched in one micro-
environment community (single column in Extended Data Fig. 7a), 
whereas others contained mixtures of communities (multiple columns 
in Extended Data Fig. 7a). Neighbour analysis detected distinct cell–cell 
interactions within each stromal environment (Extended Data Fig. 7b). 
Some stromal environments included large epithelial networks with 
sparse stroma (SEs 7 and 10, which are made of MCs 17 or 18); others 
involved vascularized regions (SE9, which involves MCs 6 and/or 13), 
showed different fibroblast phenotypes such as vimentinhi (SEs 4, 6 and 
9, which involve metacluster 8 in many communities) or fibronectinhi 
(SEs 1 and 2, which include metacluster 11); and others were poorly 
cohesive and made up of many small communities (SEs 2, 5 and 6).

We found that stromal environments were associated with SCP sub-
groups and specific tumour cell phenotypes. For example, hypoxic 
SCP 17 TNBCs were commonly classified as large, stroma-deficient 
epithelial sheets (SE 7), and SCP 13–16 TNBCs were associated with T-cell-
enriched (SEs 5 and 8) or macrophage-enriched (SE 3) stromal environ-
ments (Extended Data Figs. 7, 8b). HR+ tumours are more likely to be 
immune-cold, but some contained rare and localized immune-enriched 
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communities (SE 5)1. The HR+ tumours never contained an exclusively 
immune-hot stromal environment (SE 8) like those observed in TNBCs 
and the highly heterogeneous SCP 8 (Extended Data Figs. 7, 8b). HR+ 
tumours were associated with a range of fibroblast-enriched stro-
mal environments, with small elongated fibroblasts interacting with 
CK+HRlow epithelial cells in SEs 1, 2 and 5 and vimentinhi stromal cells asso-
ciating with HRhi tumour cells in SEs 4 and 6 (Fig. 2b, c, Extended Data 
Fig. 8b). Stromal environments were related to tumour phenotype, but 
only fragmented SE 6 (containing proliferative vimentinhi fibroblasts) 
was independently associated with poorer disease-free and overall 
survival (Fig. 4h, Extended Data Figs. 8b, 9, Supplementary Tables 6, 7).

Compared to clinically defined subtypes, single-cell pathology 
grouping improved the ability to predict the overall survival of a 
patient using Cox proportional hazards modelling (Supplementary 
Table 8). To identify features associated with patient risk that are not 
captured by clinical grading and classification, we investigated the 
epithelial and stromal single-cell and community contributions to 
the model. Almost no single-cell phenotypes or cellular metaclusters 
were independently associated with outcome (not shown); however, 
spatially defined cell communities were (Fig. 4i). For some cell types, 
large communities of tumour cells were related to a better outcome, 
whereas similar networks of a small size were related to a poor outcome 
(Fig. 4i (TCs 12 versus 13; 17 versus 23; and 5 versus 15). In addition, the 
microenvironment community MC 6—which is characterized by vas-
cularization with T cell involvement—was significantly associated with 
an increased risk of death, even though it was more commonly found 
in the low-risk HR+ clinical subgroups than other subgroups (Fig. 4i, 

Extended Data Fig. 7). By contrast, highly T-cell-infiltrated MC 19 and 
macrophage-enriched MC 27 were significantly associated with better 
patient outcomes, even though inflammation is more common in high-
risk TNBC tumours than other clinical subgroups (Fig. 4i, Extended Data 
Fig. 7). Thus, tumour types and tumour and stromal architectures that 
are defined by single-cell pathology could inform prognosis beyond 
the current clinical classifications.

Quantification of intratumour heterogeneity
We investigated the reproducibility and spatial variability of SCP clas-
sifications in two central and two peripheral tumour regions from 72 
patients in an independent cohort, which resulted in 344 additional 
images containing a total of 411,410 cells (Supplementary Table 9). We 
used the same analytical approach described above to independently 
define single-cell phenotypes, match them to cellular metaclusters 
and classify each imaged region into SCP subgroups and stromal archi-
tectures (Extended Data Figs. 5c, 10a). All cellular metaclusters and 
SCP subgroups that were identified in the first cohort were present in 
the second cohort. Probably owing to the patient-selection strategy 
(which enriched the second cohort in metastatic low-grade tumours), 
we observed a higher proportion of subgroups that involve CKlowHRlow 
single-cell phenotypes—such as SCP 3, 6 and 9—in this cohort (Extended 
Data Fig. 10a). For each region of each tumour, we quantified the spatial 
variability of cell phenotypes using Shannon entropy (Extended Data 
Fig. 10a colour bar), and determined the difference in cellular content 
relative to the patient’s overall distribution of single-cell phenotypes 
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(all regions) using Kullback–Leibler divergence  (Extended Data  
Fig. 10b, c). Most patients had only moderate inter-region heterogene-
ity (Extended Data Fig. 10b). Distinctly divergent regions were more 
commonly identified as SCP 2, which consists of CK+HR+ cells, or SCP 
7, containing epitheliallow cells (Extended Data Fig. 10b, c). Approxi-
mately 40% of tumours had identical classification in all regions, and 
60% had one or more regions that did not agree with the whole tumour 
classification (Extended Data Fig. 10d). However, in the majority of 
cases, SCP classification of individual regions matched the tumour-
wide classification.

SCP subgroups had varying levels of regional heterogeneity. Most 
SCP subgroups that were TNBCs were phenotypically homogene-
ous (the exception being basal CK+ SCP 13). SCP subgroups that were 
associated with HR+ cancer with relatively poor prognosis—such as 
CKlowHRlow SCPs 6, 7, 9 and 10—had substantial spatial heterogeneity 
(Extended Data Fig. 10e). Different SCP subgroups containing similar 
cell types occasionally co-occurred in the same tumour, but SCP 9 was 
always accompanied by SCP 6 regions, and the two were associated 
with similar outcomes (Fig. 4e, Extended Data Fig. 10e). Spatially het-
erogeneous HRlow and CKlow SCP subgroups 6–10 have outcomes that 
are not statistically different from the population average, and on the 
basis of their regional heterogeneity it is probable that unsampled 
phenotypes influenced the accuracy of classification (Extended Data 
Fig. 10e). We observed that heterogeneous regions classified as SCP 8 or 
10 were always accompanied by multiple additional tumour subtypes 
(Extended Data Fig. 10e). These may be multiclonal or highly plastic 
tumours. Subsampling was sufficient to identify and stratify homogene-
ous low-risk HRhi and high-risk TNBCs, but increased sampling may be 
needed to accurately identify HRlow tumour phenotypes and tumours 
with considerable intratumour heterogeneity.

Discussion
This systematic, multidimensional interrogation of breast cancer histol-
ogy has generated a detailed spatial map of single-cell phenotypes and 
cellular communities and their relationships with disease. We demon-
strated that single-cell pathology can better segregate patients with 
distinct clinical outcomes than can the current strategy of clinical sub-
typing. Analysis of multicellular structures revealed that phenotypic 
heterogeneity in tumours was spatially localized to distinct regions 
or lesions. Moreover, in relation to patient outcome, the information 
yielded by the multicellular structures was superior to that yielded 
by single-cell data alone. We observed that phenotypic and spatial 
heterogeneity varied between clinically established subtypes and iden-
tified breast cancer phenotypes that co-occur. This work suggests that 
multicellular spatial information is medically relevant and provides a 
basis for future study of how spatial and phenotypic tissue features 
influence disease outcome.
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Methods

Data reporting
No statistical methods were used to predetermine sample size. All 
samples were stained simultaneously. Image-acquisition order was 
distributed spatially and independently of patient or tumour replicates. 
Image acquisition and single-cell quantification and clustering were 
blinded to patient identifiers and clinical metadata.

Clinical data
The samples of tumours from the described patient cohorts were 
obtained from University Hospital Basel and University Hospital Zurich. 
The cohort from University Hospital Basel includes 281 patients who 
were not selected for any clinical or histological features. Patholo-
gists recorded the available patient metadata (Supplementary Table 1) 
and evaluated the suitability of tissue sections for tissue microarray 
(TMA) construction26. The TMA contains one 0.8-mm tumour core 
per patient, in some cases an additional matched sample of healthy 
breast tissue, and a few control samples (liver tissue). The cohort from 
University Hospital Zurich comprised 72 patients; the samples include 
four 0.6-mm cores from four different regions of each tumour as previ-
ously described27. Tumour cores were punched from two central and 
two peripheral areas that averaged 1 cm in distance between regions. 
Samples were selected to contain equal proportions of the different 
tumour grades and to include patients with and without lymph node 
metastases (Supplementary Table 9). In total 720 images were acquired 
that varied in size and localization in the tumour. This project was 
approved by the local Commission of Ethics (ref. numbers 2014-397 
and 2012-0553).

Panel
An antibody panel was designed to target epitopes specific for breast 
cancer as well as markers for cell cycle and phosphorylation-based 
signalling, and to distinguish epithelial, endothelial, mesenchymal 
and immune cell types (Extended Data Fig. 1, Supplementary Table 2). 
Clone information is available in Supplementary Table 2.

Preparation and staining
Tissue samples were formalin-fixed and paraffin-embedded  
at the University Hospitals of Basel and Zurich. The antibody  
panel described in Extended Data Fig. 1 was used to stain the tissue 
sections5. Tissue sections were dewaxed in xylene overnight and  
rehydrated in a graded series of alcohol (ethanol:deionized water  
100:0, 90:10, 80:20, 70:30, 50:50, 0:100; 5 min each). In a 95-°C water 
bath, heat-induced epitope retrieval was conducted in Tris-EDTA buffer 
at pH 9 for 20 min. The TMAs were immediately cooled and then blocked 
with 3% BSA and 5% goat serum in TBS for 1 h. Samples were incubated 
overnight at 4 °C in primary antibody at 7.5 g l−1 diluted in TBS, 0.1% 
Triton X-100 and 1% BSA. Tissue samples were washed twice with TBS 
and 0.1% Triton X-100, and twice with TBS, and dried before IMC meas-
urements.

For combined immunofluorescence and IMC staining, tissues were 
stained overnight at 4 °C with primary metal-conjugated mouse HER2 
(151Eu) and rabbit pan-cytokeratin (175Lu) antibodies before washing and 
the mixed addition of fluorescent and metal-conjugated anti-mouse 
(AF488, 165Ho) and anti-rabbit (AF555, 159Tb) secondary stains for 1 h at 
room temperature. A cover slip was added, and tissue was imaged for 
fluorescence signal. Subsequently, the cover slip was removed, and 
samples were washed, dried and subjected to mass cytometry laser 
ablation and acquisition.

IMC
Images were acquired using a Hyperion Imaging System (Fluidigm). 
The largest square area from each core of a TMA was laser-ablated in 
a rastered pattern at 200 Hz, and preprocessing of the raw data was 

completed using commercial acquisition software (Fluidigm). IMC 
acquisition stability was monitored by interspersed acquisition of iso-
tope-containing polymer (Fludigm). All successful image acquisitions 
were processed, and images containing pan-marker staining variation 
specific to TMA location were removed. In a few cases the acquisition 
was interrupted and later continued, resulting in two tumour images 
from the same TMA core. Therefore, the cohort of 281 patients resulted 
in 289 tumour, 87 healthy breast and 5 liver control images. Where 
applicable, signal spillover between channels was corrected using 
functions from the CATALYST R package28 (v.1.5.6). The cohort of 72 
patients resulted in 263 tumour, 68 healthy breast and 6 control images 
that were used for analysis.

Data processing
Data were converted to TIFF format and segmented into single cells 
using the flexible analysis pipeline available at https://github.com/
BodenmillerGroup/ImcSegmentationPipeline. In brief, individual cells 
and regions of tumour and stroma were segmented using a combination 
of Ilastik v.1.1.929 and CellProfiler v.2.1.130. Ilastik was used to generate 
a probability map by classifying pixels (single cells: nuclei, membrane 
and background; tumour/stroma: tumour, stroma and background) on 
the basis of a combination of antibody stains to identify membranes 
and nuclei. Probability maps were then segmented into single-cell or 
tumour and stroma object masks using CellProfiler.

Single-cell segmentation masks and TIFF images of the 35 channels 
were overlaid and the mean expression levels of markers and spatial 
features of single cells were extracted using the MATLAB toolbox 
regionprops. Even with very-good-quality segmentation, the imag-
ing of tissue segments results in single-cell data of tissue slices and 
overlapping cell fragments that do not always capture the nucleus 
of a cell, and therefore nuclei-mismatched signal can be assigned to 
neighbouring cells in densely packed areas. This can lead to rare cases 
in which data assigned to one cell contains marker expression from 
the neighbourhood.

The single-cell IDs of the direct neighbours of each cell (that is, cells 
within 4 pixels (4 μm) of the cell of interest) were detected and recorded 
using histoCAT software. The number of pixels expanded to detect 
neighbours was chosen such that small gaps in segmentation would 
be bridged, but no cells after the direct neighbour would be recorded 
(cell minor axis lengths: 5th–95th percentile 4.84–14.59 pixels; aver-
age 9.51 pixels).

Individual cell locations inside or outside of a tumour mask were iden-
tified and the distance of each cell to the tumour boundary (from inside 
and outside of the tumour region) was calculated using the MATLAB 
toolbox regionprops. Distances were measured between the closest 
pixels of the objects in question.

Data transformation and normalization
The presented data were not transformed, and all analyses were  
based on raw IMC measurements. Single-cell marker expressions are 
summarized by mean pixel values for each channel. The single-cell 
data were censored at the 99th percentile to remove outliers, and 
z-scored cluster means were visualized in heat maps. For t-SNE and 
PhenoGraph the data were normalized to the 99th percentile, as is 
suggested for these algorithms23,31. To visualize the number of cells 
per image or patient and for survival modelling, the cell counts were 
normalized by the image area (total number of pixels) and displayed 
as cell density. For Cox proportional hazards survival modelling, these 
densities were multiplied by a factor of 107 to yield values larger than 1 
and then log-transformed.

Analysis workflow
The single-cell analysis pipeline was implemented in R, but image-
analysis steps were performed in MATLAB. All statistical tests were 
performed using common functions in R.

https://github.com/BodenmillerGroup/ImcSegmentationPipeline
https://github.com/BodenmillerGroup/ImcSegmentationPipeline
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Clustering and metaclustering
Single cells of the large cohort from University Hospital Basel were clus-
tered into groups of phenotypically similar cells using a combination of 
PhenoGraph23 for initial, unsupervised clustering and an aggregation 
of these clusters into larger groups on the basis of their mean marker 
correlations to identify cellular metaclusters. In a first step, the data 
were over-clustered to detect and separate rare cell subpopulations. 
PhenoGraph (v.2.0) was used with default parameters (as implemented 
in histoCAT and Cyt) and 20 nearest neighbours. For high-dimensional 
clustering, 29 markers and 4 cell-shape features were used: iridium, his-
tone, phosphorylated histone, CK14, CK5, CK8/18, CK19, CK7, pan-CK, 
E/P-cadherin, ER, PR, HER2, GATA3, SMA, vimentin, fibronectin, vWF/
CD31, CD44, CD45, CD68, CD3, CD20, cleaved caspase 3/cleaved PARP, 
carbonic anhydrase, phosphorylated S6, Ki67, p53, EGFR, area, eccen-
tricity, extent and number of neighbours. Of the resulting 71 clusters, 
the 59 epithelial clusters were aggregated into larger groups following 
the hierarchical clustering (Euclidean distance and Ward’s linkage) of 
their mean marker correlations. Multiscale bootstrap resampling was 
used to assess the uncertainty of each subtree (R package pvclust, v.2.0), 
and separation of the hierarchy was assigned so that significant epithe-
lial subtrees were maintained and known biological differences were 
separated. This resulted in 14 tumour cell metaclusters of varying size 
and subtree robustness (Extended Data Fig. 5a). Clusters that showed a 
marker expression typical of stromal and immune cells (these clusters 
were limited in number owing to our tumour-marker-focused panel) 
were kept as in the original PhenoGraph clustering and not aggregated 
into larger groups. This metaclustering yielded 27 cellular subgroups, 
which represent various immune, stromal and epithelial cell types. The 
granularity, the level and the detail at which phenotypes are divided or 
clustered for the studied cell types depends on the selection of both 
the panel and the choice of parameters. Although a more-granular 
distinction of cell types might enable even more subtle differences in 
the expression of markers to be elucidated, it would limit comparability 
between tumours as many tumour cell types would be patient-specific.

Cluster matching across cohorts
Single cells from the second cohort from University Hospital  
Zurich were clustered unsupervised and independently using  
PhenoGraph23 with the same settings described for the first cohort 
above and a nearest neighbour parameter of 30. The clusters were 
matched to the most-similar metacluster of the previous cohort using 
Pearson correlation of the z-scored mean marker expression. In two 
specific cases (clusters 8 and 15) in which the cluster in question was 
poorly correlated with all metaclusters but was most correlated with 
a stromal cell type, we manually re-assigned the cluster because on 
visual inspection of the images, those clusters represented cells that 
form clear tumour bulks.

Barnes–Hut t-SNE
For visualization, high-dimensional single-cell data were reduced to 
two dimensions using the nonlinear dimensionality reduction algo-
rithm t-SNE31. We applied the Barnes–Hut implementation of t-SNE 
to 99th-percentile normalized data with default parameters (initial 
dimensions, 110; perplexity, 30; θ, 0.5). The algorithm was run on a 
randomly subsampled set of cells (20% from each image) so that visible 
patterns in crowded plots were not obscured and for better computa-
tional performance.

Neighbourhood analysis
To identify significantly enriched or depleted pairwise neighbour inter-
actions between cell types, histoCAT functions were used to perform 
a permutation-test-based analysis of spatial single-cell neighbour-
hoods17. Neighbouring cells were defined as those within 4 pixels (4 µm). 
P values smaller than 0.01 were considered as significant.

Single-cell pathology patient grouping
Patients were grouped on the basis of the proportions of tumour cell 
metaclusters using the cytofkit R implementation of PhenoGraph23 
(v.1.10.0) with 8 nearest neighbours and default parameters. The 
number of nearest neighbours was chosen such that small groups 
of patients for whom a distinct cell type was predominant could be 
separated. A choice of a higher value for this parameter would lead to 
fewer groups, and hence patients with entirely unrelated predominant 
phenotypes would be grouped together. A lower value of the nearest 
neighbour parameter might capture more subtle differences in the cel-
lular composition of tumour types, but would severely limit statistical 
power for group comparison and survival analysis. The composition 
of each patient group by their clinically assigned metadata is available 
in Supplementary Table 3. Patient group 18 was removed from further 
downstream analysis owing to lack of statistical power, as it contained 
only three patients with distinct tumours that were strongly dominated 
by a rare HR+CK− cell type.

Single-cell pathology group matching
Tumour cores from the second cohort from University Hospital of 
Zurich were assigned to the most-similar previously defined SCP group 
on the basis of their matched tumour cell-type components. The inverse 
of Pearson correlation was used as a distance metric.

Spatial heterogeneity
In the cohort from University Hospital Zurich that contains multiple 
cores per tumour, the intracore heterogeneity of tumour cells and that 
of stromal cells were separately quantified using the entropy-based 
Shannon index on the amounts of the different cell types within each 
core. Shannon entropy has been shown to serve as a measure of diver-
sity and homogeneity in various contexts32. It can also be considered 
as a measure for the information content of a string; in our case, every 
cell of an image is represented by a letter according to its cell type. The 
most-compressible string is obtained if every cell is of the same type, 
and the string with most information is obtained if every cell is unique 
according to the following formula: H(X) = −∑Pilog2(Pi), in which Pi is 
the probability of a given symbol and H(X) is the Shannon entropy. 
Inter-core heterogeneity within a tumour was approximated by calcu-
lating the Kullback–Leibler divergence from the cell-type distribution 
(proportions of each cell type) of an individual core to the average 
cell-type distribution across all cores from a patient. Kullback–Leibler 
divergence describes the loss of information that occurs when going 
from an original distribution to a summary distribution33. Hence, if all 
cores of a tumour are composed of identical proportions of the same 
cell types, the Kullback–Leibler divergences of every individual core 
to the patient average will be minimal. The R package entropy (v.1.2.1) 
was used for the calculation of both Shannon entropy and Kullback–
Leibler divergence. Intratumour heterogeneity and the consistency 
of SCP group assignment of images of the same patient are visualized 
in Extended Data Fig. 10.

Spatial communities
The images were converted into topological neighbourhood graphs in 
which every cell is represented by a node (visualized at the centroid), 
and the nodes are connected by an edge if the cells directly neighbour 
each other (Fig. 2). Neighbouring cells were defined as those within 4 
pixels (4 µm) of the outermost pixel assigned to a cell. The Louvain 
community detection algorithm24 (C implementation by Lefebvre and 
Guillaume, v.0.2, wrapped by MATLAB as used by the implementa-
tion of PhenoGraph v.2.0 that was used by histoCAT and Cyt) was then 
applied to identify highly interconnected spatial subunits in the tissue 
graph. Although using community detection algorithms on spatially 
constrained networks is known to hide underlying non-spatially driven 
solutions, the only aim of applying the algorithm here was to extract 



spatial information and identify communities on the basis of physi-
cal proximity34. This analysis was performed on epithelial cells only  
to identify tumour communities (without including stromal or immune 
cells in the graph) and again on all cells of a tissue to identify communi-
ties of the tumour microenvironment. A tumour-specific cohesiveness 
score was calculated on the basis of the average sizes of the identified 
tumour communities. Communities that contained fewer than ten cells 
were excluded from further analysis to focus on cohesive cell patches 
and not individual disconnected cells. Fifteen patients were excluded 
from the analysis based on tumour communities because the imaged 
regions did not contain any tumour communities that consisted of at 
least ten cells. To identify recurring similar spatial cell-type communi-
ties, the cytofkit PhenoGraph23 (v.1.10.0) was run on the minimum to 
maximum normalized, absolute numbers of cells of each cell meta-
cluster in each community. This analysis was conducted separately 
for the tumour communities (on the basis of only the epithelial cell 
types (k = 80)) and for the microenvironment communities (on the 
basis of all cells but only taking into account the individual stromal 
cell types, and aggregating all tumour cell types into one label (cell 
type group 100: including all tumour cells, k = 30)). This analysis was 
conducted separately for each cohort but was based on the matched 
metacluster cell types.

Stromal environments
On the basis of their microenvironment community compositions, 
images were grouped into 11 different stromal environments using 
hierarchical clustering (Euclidean distance and Ward’s linkage). This 
analysis was conducted separately for each cohort but was based on 
the matched metacluster cell types.

Overlapping classifications and enrichments
The Fisher’s exact test was used to identify SCP patient groups enriched 
for a specific stromal environment (Extended Data Fig. 8). The test was 
performed using the R function fisher.test (with parameter enrich-
ment = “greater”) for every potential stromal region of a patient group. 
The P values were corrected for multiple testing using the Bonferroni 
method. This enrichment analysis was also conducted with different 
combinations of SCP subgroups, stromal environments and clinical 
classifications (Extended Data Fig. 8).

Survival curves and Cox proportional hazard regression models
Kaplan–Meier survival curves and Cox proportional hazards survival 
regression models were generated using the R package survival (v.2.42-
4). The overall survival as well as the disease-free survival of patients 
in different clinical or single-cell-defined subgroups was analysed 
(Fig. 4, Extended Data Fig. 9, Supplementary Tables 4–8). Both log-rank 
tests and Cox proportional hazards models were used to investigate 
whether a patient subgroup significantly deviated from the survival of 
the remaining patients or from the survival of other patients of similar 
SCP groups or the same clinical classification (Fig. 4, Supplementary 
Tables 4–7). Log-transformed densities of communities or single cells, 
together with the clinical subgrouping and grading, were provided to 
a Cox proportional hazards survival model to find significant associa-
tions of certain community or single-cell types with patient risk and to 
investigate the hazard ratios (Fig. 4). Nested Cox proportional hazards 
models were compared using likelihood ratio tests (anova.coxph) to 

assess whether additional variables improved the survival model (Sup-
plementary Table 8).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data supporting the findings of this study (including high-dimen-
sional TIFF images, single-cell and tumour and stroma masks, single-
cell and patient data) are available online at Zenodo (https://doi.
org/10.5281/zenodo.3518284).

Code availability
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Extended Data Fig. 1 | Antibody panel and example pseudocoloured images 
of markers. Antigens targeted by the antibodies in the panel of 35 isotope-
conjugated antibodies that was used to stain the breast cancer tissue, and 
representative marker images from the analysed cohort generated by IMC. 

Every marker is visualized at least once. Each image represents a different 
tumour of the analysed cohort. Each marker was individually scaled to enable 
visualization. RTK, receptor tyrosine kinase; EMT, epithelial–mesenchymal 
transition; TF, transcription factor. Scale bars,100 μm.



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Comparison and reproducibility analysis of 
immunohistochemistry and IMC. a, Representative IMC and 
immunohistochemistry images of the quantified stains in sections of the same 
tumour core. b, Scatter plot and correlation of total immunohistochemistry 
(IHC) and IMC signal in sections of the same tumour core (IHC, optical density 
per μm2, IMC, ion counts per μm2; n = 319 cores). c, Scatter plot and correlation 
of the number of positively stained cells in sections from the same tumour core 
(n = 319 cores). d, Bland–Altman plots for reproducibility of the IMC signal in 
positively stained cells across images from different regions of the same 
tumour, adapted to visualize the average across four samples on the x axis and 

the difference of every individual sample to the tumour average on the y axis. 
Only images that contained positively stained cells and more than 200 cells in 
total were taken into account for this analysis (ER, n = 280 cores from 72 
patients; PR, n = 213 cores from 66 patients; HER2, n = 291 cores from 72 
patients; E/P-cadherin, n = 200 cores from 65 patients; Ki67, n = 281 cores from 
72 patients). Red line represents the overall average of the differences to the 
tumour mean; blue lines represent the 95% confidence interval (1.96 × s.d.). The 
percentage of observations that fall within the confidence interval is indicated 
at the top of each plot.



Extended Data Fig. 3 | Simultaneous immunofluorescence and mass 
cytometry imaging. Immunofluorescence (IF) and mass cytometry (IMC) 
imaging of the same tissue sample using metal-conjugated HER2 and pan-CK 
primary antibodies and both fluorescent and metal-conjugated secondary 
stains. Pseudocolour images of individual channels (a), three-marker images 
produced from each label type (b) (white, overlap; red, HER2; green, pan-CK; 

blue, DNA intercalator), as well an overlay of the same marker from all three 
label types (c) (white, overlap; red, secondary immunofluorescence; green, 
secondary IMC; blue, primary IMC). d, High-magnification images of the 
regions labelled with white squares in b, comparing the resolution, expression 
and similarity of immunofluorescence and IMC.
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Extended Data Fig. 4 | Single-cell localization relative to the tumour–stroma 
interface. a–d, t-SNE maps of 171,288 subsampled single cells from high-
dimensional images of breast tumours, coloured by patient (a), localization 
relative to the tumour–stroma interface (b), single-cell distance to the tumour–
stroma interface (c) and number of neighbouring cells (d). e–g, Representative 
images with single-cell mask, labelled by metacluster identifier (e), tumour and 
stroma masks (f) and heat map that represents the distances of single cells to 

the tumour–stroma interface from each side (g). Scale bar, 100 μm. h, i, Log-
transformed distances to tumour front of stromal cell clusters (h) and tumour 
cell metaclusters (i). j, Binned distances of all metaclusters to the tumour front. 
Bin number 0 contains all cells that are directly touching the interface. 
Negative distances represent the distance to the tumour boundary from inside 
the tumour and positive values indicate the distance outside the tumour.



Extended Data Fig. 5 | Metaclustering and cluster matching across cohorts. 
a, Heat map showing z-scored mean marker expression of single-cell 
phenotypic clusters identified by PhenoGraph (Fig. 1) with colours on the 
colour bar and hierarchical clustering indicating the corresponding 
metacluster. Red stars on the hierarchical clustering tree indicate subgroups 
that robustly reappear as separate groups using multiscale bootstrap 
resampling (P < 0.05 (R function pvclust)). b, Examples of untransformed 
distributions of cluster marker expressions that differ between metaclusters. 

c, Heat maps showing the z-scored mean marker expression or distance to the 
tumour–stroma interface for each metacluster defined in the cohort of 281 
patients from University Hospital Basel and each matched PhenoGraph cluster 
from the multicore cohort of 71 patients from University Hospital Zurich. 
PhenoGraph clusters of the Zurich cohort were matched to the metaclusters of 
the Basel cohort on the basis of the Pearson correlation of the mean marker 
expression (Methods).
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Extended Data Fig. 6 | Densities of single-cell phenotypes in different 
clinical subtypes and SCP patient subgroups. Box plots of cellular 
metacluster densities in patients of each clinical subtype (a) (HR+HER2−, n = 173; 
HR+HER2+, n = 29; HR−HER2+, n = 23; triple negative (HR−HER2−), n = 48) (a) and 
each SCP subgroup (b) (SCP1, n = 17; SCP2, n = 21; SCP3, n = 20; SCP4, n = 12; 

SCP5, n = 32; SCP6, n = 10; SCP7, n = 13; SCP8, n = 11; SCP9, n = 20; SCP10, n = 24; 
SCP11, n = 31; SCP12, n = 14; SCP13, n = 15; SCP14, n = 11; SCP15, n = 8; SCP16, n = 10; 
SCP17, n = 9; SCP18, n = 3). For box plots, centre line represents the median, box 
limits are the first and third quartiles, whiskers extend to 1.5 × interquartile 
range and the points beyond the whiskers are outliers.



Extended Data Fig. 7 | Stromal environments based on their composition of 
microenvironment communities and their distinct pairwise cell-type 
interactions. a, Hierarchical clustering of tumour cores (n = 281) according to 
stromal community content and splitting into corresponding stromal 
environments (n = 11). The stacked bar plot at the top indicates the average 
number of cells from each cellular metacluster present within each type of 
microenvironment community. b, The presence of significant (P < 0.01) cell–
cell interactions (red) and cell–cell avoidances (blue) identified per image 

based on a permutation test (1,000 permutations). Black outlined regions 
indicate significant interactions that are enriched in images from the 
respective stromal environments (P < 0.05 (one-sided Fisher’s exact test for 
enrichment, corrected for multiple testing). Colour bars on the right indicate 
the SCP subgroup, grade and clinical subtype of the tumour. Cell-type 
interactions along the top are indicated by the labelled cell type of interest and 
neighbouring cell.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Comparisons and enrichments between 
classifications. a, b, Bubble plots visualizing the overlap between SCP 
subgroups of breast cancer (SCP1, n = 17; SCP2, n = 21; SCP3, n = 20; SCP4, n = 12; 
SCP5, n = 32; SCP6, n = 10; SCP7, n = 13; SCP8, n = 11; SCP9, n = 20; SCP10, n = 24; 
SCP11, n = 31; SCP12, n = 14; SCP13, n = 15; SCP14, n = 11; SCP15, n = 8; SCP16, n = 10; 
SCP17, n = 9 (SCP18, n = 3 excluded)) and clinical subtypes (a) (HR+HER2−, n = 173; 
HR+HER2+, n = 29; HR−HER2+, n = 23; triple negative (HR−HER2−), n = 48) and 
stromal environments (b) (SE1, n = 49; SE2, n = 88; SE3, n = 9; SE4, n = 24; SE5, 
n = 25; SE6, n = 24; SE7, n = 8; SE8, n = 14; SE9, n = 14; SE10, n = 18; SE11, n = 2). 

•P < 0.1, *P < 0.05, **P < 0.01, ***P < 0.001 (one-sided Fisher’s exact test for 
enrichment.). Exact P values for highlighted pairs: SE1 and SCP7, P = 0.013; SE3 
and SCP8, P = 0.021; SE5 and SCP15, P = 0.031; SE6 and SCP3, P = 0.034; SE8 and 
SCP14, P = 0.008; SE8 and SCP8, P = 0.093; SE9 and SCP12, P = 0.036; HR+HER2− 
and SCP3, P = 0.079; HR+HER2− and SCP5, P = 3.58 × 10−4; HR+HER2+ and SCP2, 
P = 0.032; HR−HER2+ and SCP11, P = 2.36 × 10−4; HR−HER2− and SCP8, P = 0.060; 
HR−HER2− and SCP14, P = 0.008; HR−HER2− and SCP15, P = 6.13× 10−6; HR−HER2− 
and SCP16, P = 0.031.



Article

Extended Data Fig. 9 | Kaplan–Meier survival curves for overall and disease-
free survival. a, b, Overall survival for stromal environments that are not 
shown in Fig. 4. c–l, Disease-free survival for each patient group on the basis of 

clinical subtype (c), grade (d), SCP subgroup (e–h) and stromal environment  
(i–f). *P < 0.05 compared to all other samples (two-sided log-rank test). For 
exact P values, see Supplementary Tables 5 and 7.



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Multicore cohort regional heterogeneity analysis. 
Quantification of intratumour regional heterogeneity in the Zurich multicore 
cohort. a, Hierarchically clustered stacked bar plot of cell-type metacluster 
densities in each tumour, grouped by patient. Coloured columns (right) 
indicate patient, clinical subtype, SCP subgroup, location of core in the 
tumour, Shannon entropy (intracore heterogeneity) and tumour-specific 
cohesiveness score. b, Dot plot of the Kullback–Leibler divergence from the 
cell-type distribution of an individual tumour region to the average 
distribution of the patient, coloured according to the SCP subgroup 
classification per tumour region (n = 263 tumour cores), grouped by patient 
(n = 71 patients) and ordered by increasing average Kullback–Leibler 
divergence per patient. c, Box plots of the same Kullback–Leibler divergence of 
each region to the average cell-type distribution of the patient, grouped by 
tumour regions that are individually identified as the same SCP subgroup, 

independent of the patient. Box plots as in Extended Data Fig. 6. SCP1, n = 12; 
SCP2, n = 13; SCP3, n = 11; SCP4, n = 10; SCP6, n = 76; SCP7, n = 7; SCP8, n = 3; SCP9, 
n = 5; SCP10, n = 1; SCP11, n = 26; SCP12, n = 51; SCP13, n = 15; SCP14, n = 18; SCP15, 
n = 4; SCP16, n = 5; SCP17, n = 5; SCP18, n = 1). d, Bar indicating the percentage of 
patients (n = 71) with the indicated fraction of individually classified images 
that match the whole tumour classification. e, Bubble plot visualizing the 
variation in intratumour regions within patients of each SCP subgroup. Rows 
represent tumours of each SCP subgroup as identified by the combined 
analysis of all imaged regions. Columns represent tumour regions individually 
matched to a SCP subgroup. For each whole-tumour classification on the y axis, 
the size of the circle indicates the fraction of corresponding images 
individually classified as a SCP subgroup. For each image classification on the 
x axis, colour indicates the fraction of images within each tumour type.
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